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A B S T R A C T

Prescribed fire use has increased throughout the Southeastern U.S. and Southern Appalachian Mountains as an 
effective tool for landscape-scale fuels reduction and ecosystem restoration, yet may become more difficult in 
extreme weather conditions. The objective of this study is to assess long-term (100 year) forest response to 
divergent scenarios of climate and prescribed burning initiatives. We modeled 48, 6.25 ha sites distributed 
throughout western North Carolina that were selected by combining historical geospatial prescribed fire data and 
input from regional fire managers. For eight functional groups of tree species, we simulated 21 scenarios 
combining seven different prescribed fire intervals and three climate scenarios. We found that climate, burn 
interval, and initial forest community composition affect total biomass and functional group composition, with 
the least biomass occurring under hotter drier conditions and the greatest number of fires. Changes in functional 
group composition were most influenced by the initial forest community, then number of fires, then climate. 
Forest demographics were also sensitive to prescribed fire; young cohorts (<30 years) increased only when sites 
were burned every 10 years or more frequently, while intermediate age cohorts (30–60 years) increased only 
when burned every 5 years, regardless of climate and initial forest community. Our simulations and scenario 
design help to discern the effect of varying climatic and weather conditions, fire management, and existing forest 
composition on future forests. This work can be used to support fire and natural resource management planning 
by exploring a range of uncertainty associated with different fire and climate conditions.

1. Introduction

In the wake of land management policies enacted in the early 1900′s, 
wildland fire was removed from and actively suppressed in most 
terrestrial ecosystems in the United States for over a century (Hessburg 
et al., 2019; Nowacki and Abrams, 2008). Critical landscape patterns 
and processes that rely on frequent fire, such as forest and habitat het
erogeneity (Saladyga et al., 2022), nutrient cycling (Knoepp et al., 
2009), floral and faunal diversity (Holzmueller et al., 2009), and 
shade-intolerant plant species regeneration have been degraded or 
supplanted due to lack of fire (Nowacki and Abrams, 2008). To address 
these deficiencies, prescribed fire implementation has increased in 
recent decades (Hiers et al., 2020; Kolden, 2019). Prescribed fire is a 
widely used land management practice with critical ties to ecosystem 
health and cultural values (Riley et al., 2018) and is critical for reducing 

wildland hazardous fuels and reducing wildfire risk, promoting more 
resilient ecosystems, and restoring fire-adapted ecosystem function 
(Agee and Skinner, 2005; Kolden, 2019). We focus here on forecasting 
the effects of long-term prescribed fire use on forest composition in the 
Southern Appalachian region of the United States.

The Southern Appalachian Mountains are characterized by diverse, 
fire-adapted, temperate forests (Erlandson et al., 2021; Tripp et al., 
2019). Trees and other species in these upland hardwood forests evolved 
with frequent (every 3 to 25 years), low to moderate intensity fires that 
were ignited by lightning and Indigenous peoples, who managed forests 
for multiple uses (e.g., hunting and foraging) and general land stew
ardship (Abrams et al., 2021; Aldrich et al., 2010; He and Lamont, 2018; 
Waldrop et al., 2007). Prior to fire exclusion in the late 19th and 20th 
centuries, more frequent, low-to-moderate intensity fires maintained 
less dense, more diverse, and more open forested ecosystems (Harrod 
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et al., 2000). There is uncertainty about historical fire return intervals, 
ignition sources, and how fire return intervals may have varied 
throughout the region; however, there is general consensus that more 
fire occurred in most of the Southern Blue Ridge before the early 1900′s 
(Brose et al., 2001; Van Lear and Waldrop, 1989).

The onset and duration of fire suppression in the 20th century shifted 
forest structure and composition to more shade-tolerant and fire- 
intolerant mesophytic species (Abrams and Nowacki, 2015; Flatley 
et al., 2013, 2015). Mesophication is directly linked to the decline in oak 
regeneration and recruitment into the overstory, loss of fire adapted rare 
plant communities, and reduced biodiversity and forest heterogeneity 
(Brose et al., 2001, 2013). The accumulation of mesophytic forest litter 
limits shade-intolerant regeneration and understory biodiversity 
because the litter characteristics and moist microclimate inhibit the 
ignition and spread of lower intensity fires (Alexander et al., 2021; 
Dickinson et al., 2016; Kreye et al., 2013). Furthermore, during long 
periods of fire suppression, the formation of the organic soil layer (duff) 
is more pronounced near xeric species than mesic ones, which can cause 
more canopy decline via delayed mortality when fires consume this 
organic soil layer and potentially damage mature tree fine roots, typi
cally under more severe drought conditions (Robbins et al., 2022; Car
penter et al., 2020). This positive feedback between forest composition 
and reduced fire negatively impacts wildlife habitat and regeneration of 
shade intolerant species (e.g., Quercus spp.) and raises long-term con
cerns for forest water use and drought resilience, particularly with 
increased climate variability (Caldwell et al., 2016; Hwang et al., 2020; 
McQuillan et al., 2024; Roman et al., 2015).

Following nearly a century of fire exclusion, prescribed fire use has 
increased substantially in the Southern Appalachians in recent decades, 
as it is one of the most practical tools to promote fire adapted vegetation, 
and ultimately, more climate resilient future forests. Fire adapted eco
systems and climate resilience are directly linked. Fire adapted forests 
burn more frequently at safer, lower intensities and promote climate 
resilience by reducing hazardous fuel loads to increase public safety), 
promoting fire-adapted oak and pine regeneration, improving wildlife 
habitat, and increasing forest heterogeneity and plant diversity - all of 
which improve ecosystem health and resilience(Elliott and Vose, 2010; 
Harper et al., 2016; Lafon et al., 2017; Saladyga et al., 2022). Never
theless, questions remain regarding how often prescribed fires are 
needed to reset forest composition closer to a more fire-adapted state 
and how forest and fire use dynamics respond under different projected 
climatic conditions (Waldrop, 2016). Numerous field studies have been 
conducted to understand forest response to single and repeat prescribed 
fires (Keyser et al., 2017; Waldrop, 2016), varying burn intensities 
(Saladyga et al., 2022; Schwartz et al., 2016; Vaughan et al., 2021), and 
seasonality (Keyser et al., 2019; Melcher et al., 2023; Vaughan et al., 
2022). Prescribed fires have been shown to promote oak regeneration 
and decrease overall sapling density (Brose et al., 2013); however, data 
do not necessarily support species composition shifts of more mature 
trees in response to low-intensity fires (Elliott and Vose, 2005, 2010) as 
these shifts are difficult to monitor and detect over ‘shorter’ time periods 
(years to a few decades).

In the Southern Appalachian region, general circulation climate 
projection models suggest multiple degrees of warming over the next 
century and increased precipitation variability. If these changes occur 
and cause extreme weather, prescribed burn planning and imple
mentation become more difficult. This includes potential shifting of 
available prescribed burn days out of historical or known ‘burn win
dows’ or changing the total number of available days to burn (Kupfer 
et al., 2020; Mitchell et al., 2014). The need to manage landscapes for 
change amidst short- and long-term uncertainties can benefit from 
exploring tradeoffs and projected long-term outcomes of forest response 
and resilience under different management actions and climate sce
narios (Scheller, 2020). Uncertainties about how temperature and pre
cipitation regimes may change could affect forest succession patterns, 
raising questions about how the frequency and timing of prescribed 

burns may need to adjust to meet forest management goals (Hiers et al., 
2020). Exploring multiple scenarios of fire management and climate or 
extreme weather patterns can support adaptive management by helping 
to inform and develop new management objectives and identify metrics 
for success, particularly in novel scenarios where no historical data exist 
(Littell et al., 2011). Previous work has shown that restoring ecosystems 
toward historic fire regimes (more frequent low-intensity fires) could 
increase resilience to future wildfires and other disturbances (Kalies and 
Yocom Kent, 2016).

To generate management-relevant results, we used a process-based 
forest change and fire model, LANDIS-II (LANDdscape DISturbance 
and Succession), to simulate forest composition under 21 modeling 
scenarios with divergent prescribed fire and climate scenarios in the 
Southern Blue Ridge Mountains of western North Carolina (Scheller and 
Mladenoff, 2004; Scheller et al., 2007). To aid model parameterization 
and assure management-relevance, we leveraged local wildland fire 
managers’ knowledge to guide our simulations. We modeled scenarios 
with regular prescribed fire intervals (e.g., fire every five years) and 
restoration and maintenance intervals (i.e., where shorter, regular fire 
intervals were applied in the first 15 years and then longer maintenance 
intervals were adopted thereafter) (Warwick, 2021). We investigated 
how different climate scenarios interact with different prescribed fire 
intervals to affect forest composition using species and functional group 
biomass as metrics. We identify the most important and interacting ef
fects of current forest composition, climate uncertainty, and prescribed 
fire management regimes on future forest composition and synthesize 
our results into four key management takeaways.

2. Methods

We combined historical burn permit and occurrence data 
(2010–2022), input from regional fire managers, and forest change 
modeling under three different climate scenarios and seven 100-year 
prescribed fire plans. We used the resultant 21 model scenarios to 
evaluate how forest composition responded to different prescribed fire 
regimes under different projected climate variations.

2.1. Study area

We modeled forest change across the Southern Blue Ridge Mountains 
of western North Carolina (Fig. 1). This landscape contains high eleva
tion mountains (~ 2000 m) and exposed ridges, as well as moist, pro
tected coves at lower elevation. Due to elevation gradients and 
topographic complexity, mean temperatures and mean precipitation 
vary across the landscape within a relatively temperate year-round 
climate. Mean July temperatures range from 19–25 ◦C and mean 
December temperatures range from 0–5 ◦C. Mean annual precipitation 
varies significantly throughout the region with some areas averaging 
~100 cm/year, while other localized areas average twice that amount 
(200–250 cm/year; PRISM Climate Group, 2024). The topographic 
variability and temperate climate of the Southern Blue Ridge landscape 
yields high forest biodiversity (Erlandson et al., 2021). Upland hard
wood forests dominate western North Carolina and are mostly 
comprised of oak, maple, pine, and hickory species. Other common 
co-occurring species include tulip-poplar (Liriodendron tulipifera L.) and 
American beech (Fagus grandifolia).

2.2. Historic prescribed fire data and fire manager engagement

We used prescribed fire history and burn permit data (2010–2022) to 
map the locations of past prescribed burns and to identify areas in 
western North Carolina that are likely to experience continued pre
scribed fire use in the future. Fire history data consisted of geospatial 
prescribed fire boundaries provided by federal and state agencies and 
geospatial burn permit location data from the Southeast Prescribed Burn 
Geodatabase (Tall Timbers Research Station, 2022); these data were 
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combined and known duplicates were removed to develop a single map 
that estimated historic prescribed (Rx) fire density (Fig. 1A). Over the 
course of two iterative online workshops, regional fire managers from 
The Nature Conservancy, The North Carolina Wildlife Resources Com
mission, and the Appalachian Consortium of Fire Managers and Scien
tists used this Rx density map to further delineate parts of the landscape 
thought to be high or intermediate fire use areas. Fire managers also 
provided generalized Rx parameters (Table 1). The fire use area 
boundaries and Rx parameters informed where and under what condi
tions prescribed fires were ignited in the simulations.

2.3. Forest change and prescribed fire modeling (LANDIS-II)

We simulated prescribed fire use and forest change using LANDIS-II, 
a spatially and temporally dynamic landscape change model (Scheller 
et al., 2007). LANDIS-II uses grid cells that interact with one another to 
simulate landscape processes and subsequent vegetation change in space 
and through time. Cells were simulated at a 250-m by 250-m (~15.5 
acres) resolution, and the model was run at an annual timestep for 100 

years to capture forest succession, regeneration, dispersal, and mortality 
for 50 tree species. Species were parameterized according to their life 
history attributes (e.g., probability of establishment, longevity, age of 
maturity, shade tolerance, dispersal, etc.); species parameters are 
defined in Robbins et al. (2024) and are required inputs for LANDIS-II. 
Species cohorts (age class) were assigned to each cell, and cells can 
contain Multiple species across multiple age cohorts.

We initialized the model with near current forest conditions and 
assigned tree species age cohorts to each cell using US Forest Service 
Forest Inventory and Analysis (FIA) data (Gray et al., 2012). Each cell 
within the study area was assigned site characteristics (e.g., aspect, 
elevation, and soil composition) following Robbins et al. (2022, 2024).

We used the SCF (Social-Climate-Fire; Scheller et al., 2019), NECN 
(Net Ecosystem Carbon Nitrogen Exchange; Scheller et al., 2011), and 
Output Biomass (Scheller and Mladenoff, 2004) extensions to simulate 
prescribed fire occurrences and subsequent changes in aboveground 
living biomass. SCF simulates prescribed fire occurrences based on 
model parameters for average Rx fire size, seasonality, expected number 
of annual Rx fires, constraints on Fire Weather Index, and wind speed, 
and a probabilistic map indicating eligible locations (Scheller et al., 
2019). LANDIS-II tracks cohorts, collections of similar aged trees of the 
same species, instead of individual trees. Stochastic post-fire cohort 
mortality is simulated using species fire-resistance curves which were 
parameterized using a database of field observations of bark thickness, 
DBH, and mortality from the Southern Appalachians (Cansler et al., 
2020). Because LANDIS-II tracks age-based cohorts, tree sizes are not 
modeled, so an empirical model was fit for each species to relate bark 
thickness to age. Cohort level mortality is then probabilistically assigned 
by combining the effects of bark thickness and site level mortality, which 
is a function of effective wind speed, soil clay percentage, evapotrans
piration, and climatic water deficit. When a cohort dies, Leaf Area Index 
(LAI) decreases and the cohort’s carbon and nitrogen are then accounted 
for as dead biomass in NECN. Robbins et al. (2022) provides additional 
SCF model parameterization and calibration. To isolate the effects of 
prescribed fire, wildfires and other modeled disturbances (e.g., biolog
ical disturbances, wind throw, harvest) were excluded.

NECN tracks ecosystem exchanges of carbon and nitrogen between 
living biomass, dead biomass, and soil pools following the CENTURY 
model (Parton, 1996). NECN models cohort establishment and growth 
based on temperature and competition for available water, nitrogen, and 
light. Cohort regeneration depends on temperature and availability of 
water and light, while growth depends on species’ parameterized 
response to Minimum Growing Degree Days, Maximum Growing Degree 
Days, Minimum January Temperature, Maximum Allowable Drought, 
Leaf Longevity, and estimates of Maximum Biomass. Species’ growth, 
carbon, nitrogen, and lignin parameters were gathered from existing 
LANDIS-II models, the TRY - Categorical Traits Dataset (Kattge et al., 
2012), FIA data, or other regional sources (Davis et al., 2009). Robbins 
et al. (2022) provides additional information on parameterization and 
calibration. The Output Biomass extension summarizes data from 
NECN’s total aboveground living biomass for every desired species and 
age class at any user-specified timestep.

2.3.1. Climate
We used three climate projections: hotter and wetter (HW), hotter 

and drier (HD), and a historical random (HIST). HW and HD, are the 
highest emission projections (RCP8.5) and are downscaled to 4 km by 4 
km from the Coupled Model Intercomparison Project (CMIP) 5 using 
Multivariate Adaptive Constructed Analogs (MACA) data (Abatzoglou 
and Brown, 2012). The 4 km by 4 km pixels are then spatially intersected 
and averaged within the 10 climate regions (defined by clustering his
toric 30-year temperature and precipitation normals; Robbins et al., 
2024) of the LANDIS-II landscape. This spatial differentiation allows for 
different weather to be simulated daily in each of the 10 climate regions. 
The MRI CGCM3 RCP 8.5 projection represents the HW projection, and 
the HadGEM2 ES365 RCP 8.5 represents the HD projection. The HW and 

Fig. 1. Hexagonally aggregated geospatial prescribed burn permit and burn 
boundary data within high and intermediate fire use areas delineated by 
regional fire managers. Hexagons are displayed within western North Carolina 
and bounded by the eastern edge of the EPA Level III Southern Blue Ridge 
Ecoregion (A). Model sites (n = 48) selected from hexagons in (A) using 
stratified, semi-random sampling (B).

Table 1 
LANDIS-II social and climate-driven fire extension (SCF) model parameters used 
to bound conditions when prescribed fires could occur during model 
simulations.

Parameter Min Max Range

Temperature − 1 ◦C 26.5 ◦C NA
Windspeed NA 32 kph. NA
Relative Humidity 20 % 60 % NA
Fire Weather Index (FWI) 5 22 NA
Seasonality NA NA 334 - 65 

Day of Year
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HD projections were selected to bound the range of climate conditions 
that may shift forest composition under extreme future emissions and 
divergent precipitation regimes. The HW projection is one of the wetter 
global climate projections for the Southern Appalachian region over the 
next 100 years and projects a 3 ◦C increase in mean temperature and a 
mean increase of 60 mm/year in precipitation by 2100; the HD pro
jection simulates extreme and prolonged droughts with a mean warming 
of 7 ◦C and a mean decrease in precipitation of − 177 mm/year by the 
end of the century and has been used to evaluate forest change scenarios 
in the study region (Robbins et al., 2024). The HIST scenario uses data 
sampled from random years of GRIDMET weather data between 1979 
and 2016 (Abatzoglou, 2013).

2.4. Scenario design and analysis

2.4.1. Site selection & simulations
To test the effects of different Rx frequencies and different climate 

projections on forest composition, we evaluated 48 sites under 21 future 
fire scenarios (Table 2). The 48 sites were selected from within high and 
intermediate fire use areas where prescribed fires have previously 
occurred or were permitted (Fig. 1A,B). The precision of the geospatial 
fire history data varied, so we aggregated all information to coarser 
hexagons for the final historical Rx density map. To select modeled sites 
based on historical prescribed fire use, we identified groups of four or 
more contiguous hexagons where historical Rx data occurred. From 
these contiguous groups of hexes, a random hex was selected (if the 
group contained >10 hexes, two random hexes were selected). Within 
each site hexagon, a contiguous group of 3 × 3 (9 total) 250×250 m cells 
were selected to delineate an average sized burn site (~55 ha) based on 
fire manager input (Table 1). Therefore, selected hexagons and modeled 
cells contained representative, not exact, sites of previous prescribed 
fires.

In addition to a scenario with no prescribed fire, we modeled six Rx 
management plans for each site belonging to two categories: regular burn 
intervals and restoration + maintenance burn intervals (Table 2). The 
regular interval Rx frequencies provide a comparison for the restoration 
and maintenance intervals which are a common management approach 
(Warwick, 2021). Each of these management scenarios was run under 
three climate projections for a total of 21 future fire scenarios (with 3 
replicates each for 63 total simulations). LANDIS-II generally does not 
require a large number of replicates due to components of the model that 
tend to converge to a mean value when measured over many sites and 
long time periods (e.g., Loudermilk et al., 2014; Inglis and Vukoma
novic, 2020). We ran each model scenario for 100 years and prescribed 
fire seasonality was held constant in all scenarios with burns only 
occurring in the dormant season (early December to early March) at low 
intensities. This reflects the most active season for prescribed fire in this 
region, and when held constant, allows for more straightforward com
parisons across modeling scenarios (Van Lear and Waldrop, 1989).

2.4.2. Measuring changes in forest composition
Across these 63 simulations, we tracked aboveground living biomass 

for 29 species at 20-year intervals (years 0, 20, 40, 60, 80, 100). Within a 
single cell, biomass in year 0 is identical across all simulations. We 
summarized forest composition combining aboveground living biomass 
into two main groups—xeric species and mesic species—as defined by 
eight functional groups (adapted from Flatley et al., 2015; Robbins et al., 
2024). Five functional groups (white oak, xeric red oak, xeric hardwood, 
yellow pine, and white pine) were defined as xeric, while three func
tional groups (maple, mesic hardwood, and hemlock) were defined as 
mesic. We assigned the 29 most abundant species (of 50 total) to these 
eight functional groups (Table 3).

We included species in the analysis if they were previously assigned a 
functional group by Robbins et al. (2024) or if the importance score 
ranked in the top 25 of 50 parameterized species based on basal area and 
count derived from Forest Inventory Analysis (FIA) data. For example, 
we added tulip-poplar, the third most important species, to the mesic 
hardwood functional group, and we removed shagbark hickory from the 
mesic hardwood functional group because it was ranked 46th in land
scape importance. In total, we added nine species to the classifications 
used by Robbins et al. (2024), guided by the functional groupings of 
Flatley et al. (2015), and removed four species.

We aggregated forest composition data from the model replicates in 
three ways. First, within each of the six timesteps (years 0, 20, 40, 60, 
80, 100), we averaged biomass within the eight functional groups across 
all cells for all scenarios and replicates. Second, to better understand the 
effect of initial forest composition on response to fire and climate, we 
assigned each cell to one of three categories, xeric-dominated, mesic- 
dominated, or mixed, based on the initial (time zero) percent compo
sition of xeric and mesic functional group biomass. We identified cells as 
xeric-dominated if the five xeric functional groups contributed >66.7 % 
of total cell biomass; we identified cells as mesic-dominated if the three 
mesic functional groups contributed >66.7 % of total cell biomass; we 
identified cells as mixed if neither the xeric nor mesic functional groups 
comprised 66.7 % of total biomass. We classified 150 cells as xeric, 73 
cells as mesic, and 173 cells as mixed. From here on, these are referred to 
as initial forest community classes or classes. Third, to understand the 
composition of young and intermediate aged trees that would comprise 
the future forest canopy, we separated biomass into two age groups: 
trees less than or equal to 30 years of age and trees between 30 and 60 
years of age. Biomass within these age groups was output for the two or 
three most abundant species (defined by initial biomass) within each 
functional group: two maple species - Acer rubra (red maple) and Acer 
saccharum (sugar maple); three mesic hardwood species - Carya alba 
(mockernut hickory), Carya glabra (pignut hickory) and Liriodendron 
tulipifera (tulip poplar); two species within the white oak functional 
group - Quercus alba (white oak) and Quercus prinus (chestnut oak). We 
selected age 30 as a cutoff for younger biomass for all functional groups 
as it is an average age (near) sexual maturity for upland hardwood forest 

Table 2 
Categories of Rx fire management plans (A) separated by burn intervals with abbreviations (B), fire frequency (C), and the total number of fires within all LANDIS-II 
model runs (D) across 100 years. The description (E) of each management plan explains why it was selected for simulation.

A. Management Plan 
Category

B. Scenario 
Abbreviation

C. Fire Frequency D. D. Total Number of 
Fires

E. Description of Management Plan Over 100 Years

No Fire Unburned NA 0 No fires occur. This scenario acts as a ‘control’.
Regular 3R 3-yr 32 Highest fire frequency to provide an upper bound for prescribed fire 

use.
​ 5R 5-yr 20 High fire frequency to simulate an actively managed site.
​ 10R 10-yr 10 Moderate fire frequency closer to an “average” amount of fire for most 

managed sites.
​ 20R 20-yr 5 Lowest fire frequency used to provide a lower bound for prescribed 

fire use on a managed site.
Restoration & 

Maintenance
3R10M 3-yr x 4, followed by 10-yr 

interval
12 12 years of frequent fire followed by a shorter maintenance interval.

​ 3R20M 3-yr x 4, followed by 20-yr 
interval

8 12 years of frequent fire followed by a long maintenance interval.
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species (Jensen and Anderson, 2005).

2.4.3. Evaluating effects of climate, fire, and forest composition on biomass 
change

To quantify the relative contributions of climate, fire, and initial 
forest community class on increased or decreased site-level meso
phication, we used the three climate levels, seven fire levels, and three 
initial forest community class levels as categorical ‘treatments’ and 
included a continuous covariate, site biomass at time 0. We averaged 
results across three replicates yielding 7583 observations across 396 
sites and used change in mesic biomass percent composition (from time 0 - 
100) as the response variable for three-way ANCOVA and PERMANOVA 
(Anderson, 2017) tests with interactions. We conducted Tukey Honest 
Significance Difference tests to understand significant interactions be
tween factor levels.

We used nonparametric multivariate analysis of variance, or PER
MANOVA, to corroborate our ANCOVA findings. For each treatment 
group (e.g., modeled scenario), we had almost 400 observations that 
yielded close to normally distributed residuals (Appendix A15), but the 
variances across our treatment groups were not truly homogeneous, 
necessitating a comparison of ANCOVA and PERMANOVA results. We 
conducted the PERMANOVA tests using the ‘adonis2’ function with a 
Euclidean distance matrix within the Vegan Community Ecology Pack
age (v2.6–10) (Oksanen et al., 2025) in the R statistical language 
(v4.2.1; R Core Team, 2022). PERMANOVA uses permutations (n = 999) 
and pseudo-F statistics to estimate p-values; it leverages 
between-observation distances to partition distance matrices among 
multiple sources of variation and fits linear models using distance 
matrices. This approach is recommended when multivariate normality 
and homogeneous variance cannot be assured because it attempts to 
differentiate statistical differences between different locations of a 
group means versus differing amounts of dispersion around group means 
(Anderson and Legendre, 1999).

3. Results

3.1. End of 100-year simulation total biomass - all scenarios

We assessed the percentage change in mean total biomass from time 
0 to time 100 for all sites for each of the 21 modeled scenarios. Biomass 
increased the most in the unburned scenario (HD: 16.2 %, HIST: 18.1 %, 
HW: 29.4 %), while biomass decreased the most in the 3R scenario (HD: 
− 91.0 %, HIST: − 82.6 %, HW: − 66.8 %) (Fig. 2). HD (hotter, drier) 
climate consistently yielded the lowest mean biomass at year 100 for all 
Rx scenarios, except 5R, while HW (hotter, wetter) climate yielded the 
greatest mean biomass. For all climate projections, the largest increase 
in mean biomass between adjacent Rx scenarios occurred between the 
3R and 5R, with 33 and 20 burns, respectively (Table A1). For HD and 

HIST climate, biomass only increased under the 20R and unburned 
scenario, five and no fires, respectively; for HW climate, biomass 
increased for all Rx scenarios except 5R and 3R (Fig. 2).

3.2. Time-varying mean total biomass and percent composition by 
functional group

We initialized 48 sites with ~12,000 g/m2 mean cell biomass and 
with the following functional group composition, by percent composi
tion (averaged across all sites): white oak (30.2 %), mesic hardwood 
(21.3 %), xeric red oak (13.5 %), maple (11.4 %), white pine (12.0 %), 
xeric hardwood (4.6 %), yellow pine (4.7 %), and hemlock (2.3 %) 
(Fig. 3).

Climate-induced differences in mean total biomass are most apparent 
in later years of the simulations. Under HD climate and no fire, mean 
total biomass decreased (~1000 g/m2) between year 80 and year 100 
(Fig. 3, top left), while HW and HIST biomass stabilized; for the 3R Rx (i. 
e. most fire) scenario, mean biomass under HD and HIST climate 
decreased in all years while mean biomass for HW climate stabilized 
between year 60 and year 100 (Fig. 3, top right). HD and HIST climate 
only increased between year 80 and year 100 under the 20R Rx scenario 
(Appendix A5). Generally, differences between HW climate and the 
other two climates became more pronounced in later years.

Variability in cell biomass declined from time 0 for all Rx and climate 
scenarios. The 5R Rx scenario was an exception, as biomass variability 
increased for all climate scenarios from year 20 to year 100 (Appendix 
A1). For all scenarios, end-of-100-year mean biomass for HW climate 
was greater than the upper quartile of mean biomass in the HD climate 
(Fig. 3, Appendix A1–5). Differences in mean biomass and interquartile 

Table 3 
Functional groups (adapted from Robbins et al., 2024 and Flatley et al., 2015) are separated into xerophytic and mesophytic species groups and individual species are 
classified into one of eight functional groups. *Indicates a species not included in Flatley et al. (2015).

Xerophytic Mesophytic

Yellow Pines White Oaks Xeric Red 
Oaks

Xeric Hardwoods White Pine Maples Mesic Hardwoods Hemlock

Pinus 
echinata

Quercus alba Quercus 
coccinea

Nyssa sylvatica Pinus 
strobus

Acer rubrum Betula lenta Lirio- dendron 
tulipifera

Tsuga canaden- 
sis

Pinus 
pungens

Quercus montana 
(prinus)

Quercus 
stellata

Oxydendrum 
arboreum

​ Acer 
saccharum

Betula alleghen-sis Magnolia macroph- 
ylla

​

Pinus rigida ​ Quercus 
velutina

Robinia 
pseudoacacia

​ ​ Carya alba Quercus falcata ​

Pinus taeda* ​ ​ Sassafras albidum ​ ​ Carya glabra Quercus rubra ​
Pinus 

virginia*
​ ​ ​ ​ ​ Fagus Grandi-folia ​ ​

​ ​ ​ ​ ​ ​ Fraxinus Ameri- 
cana

​ ​

Fig. 2. Mean percent change from starting biomass (time 0) to end of 100-year 
biomass (time 100) colored by climate scenario (hotter, drier - HD; historical – 
HIST; hotter, wetter – HW). The number of fires in each Rx scenario increases 
from left to right, with no fire in unburned.
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range (IQR) were greatest between the 5R Rx scenario (20 fires, more 
variability) and the unburned (no fires, less variability). For example, 
the average IQR for all climate projections within the 5R Rx scenario is 
5445 g/m2, while the average IQR within the control scenario is 1863 g/ 
m2, which is, on average, a 65.8 % reduction in the IQR between 20 fires 
and no fires (Fig. 3, Appendix A1). The most fire scenario (3R) main
tained relatively equal IQRs across climate scenarios from early to mid- 
simulation, but the climate scenarios diverged between years 80 and 100 
where the greatest difference in IQR across climates for any Rx scenario 
was observed in year 100 (HW: 3907.5 g/m2 and HD: 1085.0 g/m2) 
(Fig. 3).

Across all climate projections, the unburned scenario (Fig. 3, bottom 

left) experienced small but consistent increases in white oak, xeric red 
oak, maple, and hemlock through time, with consistent decreases in 
mesic hardwoods, xeric hardwood, and yellow pine. Without fire, xeric 
hardwoods and yellow pine decreased considerably by year 40 and were 
nearly eliminated by year 100 (Fig. 3, bottom left). Maples increased to 
~20 % composition from their original composition (11.4 %) in the 
early to middle years of the simulations and then decreased to near 
initial percent composition, except under the HD climate, in which 
maples end of 100-year biomass increased by ~5 % composition to a 
total composition of 15 %. Mesic hardwoods decreased by about ~25 % 
to year 40 under all climate scenarios and then stabilized until year 100.

The 3R Rx scenario experienced the greatest decline in percent 

Fig. 3. Boxplots of total biomass per cell (top row) and percent composition for the eight functional groups (bottom row) at 20-year intervals for all climate 
projections (hotter, drier - HD; historical – HIST; hotter, wetter – HW) and for the burn scenarios with no fire (unburned, left) and the most fire 3R (right). Time 
0 biomass is identical for all panels.
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composition of maples, xeric red oaks, and white pines, respectively. 
Decreases in percent composition showed a small but clear response to 
climate scenarios and declines were most pronounced from year 80 to 
year 100 (Fig. 3, right). The white oak functional group increased 
through time and across all climate projections from 30.2 % initial 
composition to year 100 % composition of 39–47 %. With fire every 
three years, xeric hardwoods and yellow pine functional groups declined 
in the middle of the simulations but increased in percent composition 
toward the end of the century under all climate projections (Fig. 3, 
bottom right). With frequent fire, mesic hardwoods declined less than 
under the unburned scenario.

3.3. 100-year change in functional groups

We synthesize mean changes in percent functional group composi
tion by comparing time zero mean biomass with mean biomass at time 

100 across all functional groups, modeling scenarios, and initial forest 
community classes (Fig. 4). We chose to report change in percent 
composition, instead of percent change, so as not to inflate the impor
tance of increases in functional groups with less biomass or decrease the 
importance of change in functional groups with more biomass. For 
example, a change in percent composition from 2 % to 3 % is equivalent 
to a change of 1 % not 50 %.

Percent total biomass composition varied with prescribed fire (3R, 
5R, 3R10M, 10R, 3R20M, 20R, unburned), climate (hotter, drier; his
torical; hotter, wetter), and initial forest community class (xeric, mixed, 
mesic). Generally, xeric functional groups (top five rows of an individual 
grid) declined (1 - >15 %) or remained the same under all climate 
scenarios, except in mesic initial communities where xeric red oak and 
white pine biomass increased under all fire scenarios. The white oak 
functional group is an exception, as it behaved differently than all other 
xeric functional groups. White oaks increased the most (5 - >15 %) of all 

Fig. 4. Nine heatmaps (blue = increase, red = decrease) showing average change in total biomass percent composition between year 0 and year 100 for the eight 
functional groups (y-axis, individual grid) across the seven Rx scenarios (x-axis, individual grid) within the same climate projection (columns) and initial forest 
community class (rows). Xeric functional groups comprise the top five rows of each individual grid and mesic functional groups the bottom three rows.
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eight functional groups under all climate projections, but biomass in
creases were generally smaller in scenarios with fewer fires, except in 
mesic communities where little to no response to the amount of fire was 
detected and biomass increased considerably (12 - >15 %). Notably, the 
only increases in biomass for xeric hardwoods and yellow pine occurred 
when burned every three years. Changes in xeric functional groups’ 
biomass, both increases and decreases, varied more across the three 
initial forest community classes than across the three climate scenarios.

The three mesic functional groups (bottom three rows of an indi
vidual grid) responded dissimilarly to prescribed fire, climate, and 
initial forest community class. Maple and hemlock biomass clearly 
responded to the number of prescribed fires within the functional group 
individual row, while changes in mesic hardwood biomass were largely 
driven by the initial forest community class, as shown by increase or 
decreases driven by the xeric, mixed, and mesic heatmap rows. Mesic 
hardwoods increased (4 - >15 %) under all climate and fire scenarios in 
xeric communities and decreased (3 - >15 %) under all climate and fire 
scenarios in mixed and mesic communities. Unique from any other 
functional group, maples showed a ‘negative-to-positive’ pattern of 
change from the most to no fire scenarios, respectively. Maples only 
decreased under HW climate in xeric communities. Hemlock biomass 
mostly increased gradually for all communities and climates in response 
to decreasing amounts of fire. The greatest increases (~7 %) occurred 
under HIST and HW climates in scenarios with minimal to no fire, and 
the least change and muted response to the amount of prescribed fire 
occurred under HD climate in xeric communities.

Of the three independent factors and covariate - climate, fire, initial 
forest community class, and starting biomass, respectively - the factorial 
ANCOVA indicated that initial forest community had the largest effect 
on change in percent composition of mesic biomass, followed by starting 
biomass, fire, and climate (Table 4). All main effects were significant (P, 
0.000), and there were significant (P, 0.000 – 0.05) but smaller in
teractions among all factors; the three-way interaction between climate, 
fire, and initial forest community had the smallest effect. The in
teractions including class and fire had larger effects than those with 
climate (Table 4); in turn, change in percent of mesic biomass compo
sition was most stratified by initial forest community class, followed by 
fire and finally climate (Fig. 5).

The Tukey Honest Significant Difference (Tukey HSD) test showed 
the factor level relationships likely responsible for the significance in 
interactions by evaluating pairwise comparisons of all levels within each 
factor. For initial communities, all pairwise comparisons were signifi
cantly different when evaluating change in percent mesic biomass 
composition (Table A3). For climate, HW-HD (P, 0.001) and HD-HIST 
(P, 0.05) were each significantly different, while differences in HW- 
HIST were not significant (Table A2). For prescribed fire, comparisons 
involving the scenarios with the most fire (3R, 5R) were all significantly 
different. Comparisons of the unburned simulations to both the 20R and 

3R20M simulations were not significantly different, while pairwise 
comparisons of low to moderate fire simulations (20R, 3R20M, 3R10M, 
and 10R) yielded mixed results of both significant and not significant 
differences (Table A4). Notably, 20R was significantly different from 
both the 3R10M and 3R10M, while 10R was not significantly different 
from either scenario modeling restoration and maintenance burn 
intervals.

Both the ANCOVA and PerMANOVA identified initial forest com
munity class as the most important and highly significant factor 
impacting change in percent mesic biomass (Tables 4, A2). Prescribed 
fire was second most important followed by climate – all factors and 
interactions were significant (Table 4). Because significant interactions 
occurred and often suggest that relationships between factor levels (i.e., 
climate: HW, HD, HIST) are not stationary, we conducted a Tukey HSD 
test to explore differences between factor levels. Factor importance and 
interactions, along with their significance results, were consistent be
tween ANCOVA and PerMANOVA (Tables 4, A5). Both tests identified 
significant differences between the three initial forest community clas
ses (Tables A3, A7). However, ANCOVA and PerMANOVA disagreed in 
their identification of significant pairwise factor level comparisons for 
climate and prescribed fire scenarios. For climate, PerMANOVA results 
were inverse of that for ANCOVA. HW-HIST was the only significantly 
different comparison (Tables A2, A6). For fire, the only insignificant 
comparisons identified by PerMANOVA were Unburned-20R and 
3R20M-10R (Tables A4, A8).

3.4. Forest demography response to Rx & climate scenarios

The biomass responses of young trees (<30 years) to climate and Rx 
scenarios differed from that of intermediate age trees (30–60 years) for 
all species we investigated based on (1) general shape of the biomass 
curve through time, (2) timing of biomass local minima and maxima, 
and (3) end of 100-year biomass (Fig. 6). These three parameters varied 
most by functional group and species, but initial forest community class 
and climate increased biomass variability within a given burn scenario.

For all species, young trees comprised a small fraction of initial 
biomass, which increased as young cohorts aged and grew. Young trees 
were more likely to gain biomass up to one, or two, mid-simulation 
peaks and then decline relatively symmetrically toward the end of the 
simulation, with the exceptions of young trees under the 3R and 5R 
scenarios which varied more in response to more fires (Fig. 6C, Ap
pendix A11). The maximum mean young biomass occurred under the 
3R20M prescribed fire scenario and was just under 600 g/m2 in year 40 
(white oak, xeric -Fig. 6B). Intermediate-age tree biomass declined from 
its initial biomass in all scenarios for all species on all sites; though, 
under all but the most-fire scenarios, intermediate biomass experienced 
a local maximum around year 60.

For a given species and age class, less inter-climate variability in 
mean biomass occurred in the unburned than in the 3R20M and 3R 
scenarios (Fig. 6). Mesic and mixed sites yielded slightly greater biomass 
for both young and intermediate-aged maple species and mesic hard
wood species, while xeric sites yielded the greatest biomass for white 
oak species. Red maple, tulip poplar, white oak, and chestnut oak 
contributed most to young and intermediate-aged biomass, with the 
greatest biomass occurring under scenarios with moderate amounts of 
fire (3R10M, 10R, 3R20M). For sugar maples and hickories, young and 
intermediate cohorts generally required moderate to frequent amounts 
of fire to gain any biomass throughout the 100-year simulation, but 
young sugar maples declined under the most frequent fire scenarios (3R 
& 5R) (Fig. 6, Appendix A11–14).

4. Discussion

Natural resource managers are challenged with managing forests 
under climate uncertainty (Hwang et al., 2020; McQuillan et al., 2024), 
and there is consensus that increasing prescribed fire use is a key 

Table 4 
Summary of three-way ANCOVA using a single continuous covariate (Total_
BM_Start; year 0 total biomass) to assess the effect of three factors - climate 
projections (Climate), prescribed fire (Rx), and initial forest community class 
(Class) - on percent change in mesic biomass. Significance indicated as: 0 (***), 
0.01 (**), 0.05 (*), >0.1 (not significant).

Term DF Sum Sq. Mean 
Sq.

Statistic p- 
value

Total_BM_Start 1 9.8681 9.8681 262.6939 0.0000 ***
Climate 2 0.9649 0.4825 12.8436 0.0000 ***
Rx 6 13.0562 2.1760 57.9272 0.0000 ***
Class 2 108.2293 51.1147 1440.5586 0.0000 ***
Climate : Rx 12 1.3650 0.1137 3.0280 0.0003 ***
Climate : Class 4 0.3223 0.0806 2.1449 0.0726 .
Rx : Class 12 2.4262 0.2022 5.3821 0.0000 ***
Climate : Rx : 

Class
24 1.5842 0.0660 1.7572 0.0125 *

Residuals 8252 309.9868 0.0376 ​ ​ ​
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component of promoting more diverse, wildfire-resilient, and healthy 
future forests (Elliott and Vose, 2010; Harper et al., 2016; Lafon et al., 
2017; Saladyga et al., 2022). But, restoration and maintenance of forest 
communities is made challenging by the interacting effects of current 
forest composition, climate uncertainty, and prescribed fire manage
ment regimes. Here, we identify four specific findings relevant to fire 
managers from this work: (1) burning more than every 10 years is 
required to reduce biomass, while burning more than every five years is 
required to promote pine and xeric hardwoods, (2) hotter, drier climate 
may present unique fire management considerations particularly with 
frequent fire use (<10 years), (3) future forest composition is most 
dependent on the current forest community, followed by prescribed fire, 
and then climate and, (4) it is necessary to understand co-occurring 
changes and treatment effects on total, intermediate, and young 
biomass to develop future climate-adaptive forest management 
strategies.

In this study, the current forest community was the single most 
important determinant of future forest composition, outweighing pre
scribed fire use and climate as the second and third most impactful, 
respectively (Table 4, Fig. 5). Therefore, managing future forests may 
depend most on current stand composition and prescribed fire regime 
and less on future climate variability. Attempting to restore pre-fire 
suppression forest communities under moderate prescribed fire use 
will take longer than the career of any natural resource manager. While 
it is possible to achieve more dramatic changes in biomass and sub
stantially reduce mesic species with frequent burns (3–5 years) (Fig. 4), 
higher burn frequencies are difficult to achieve over large spatial extents 
with existing barriers to prescribed fire and will ultimately present 
tradeoffs between reducing biomass, carbon storage, and forest regen
eration (Smithwick et al., 2024; Martin et al., 2015; McDowell et al., 
2021). Though, future climate does directly impact total biomass, under 
all prescribed fire scenarios, and underscores the need for long-term 
monitoring of forest response to inform adaptive fire management 
(Figs. 2, 3). The trend of forest mesophication has taken hold in less than 
a century, but fire-adapted forests evolved over millennia and will take 
time to shift toward more open, less mesophytic forests that are 

characteristic of pre-fire suppression conditions.
Comparing aboveground forest biomass trajectories under different 

climates for the same prescribed fire management scenario provides a 
metric for climate’s influence on increasing or decreasing the amount of 
biomass on the landscape. We found end-of-100-year biomass increased 
most from starting biomass under hotter, wetter (HW) climate, with less 
pronounced differences between hotter, drier (HD) and historical (HIST) 
climate (Fig. 2, Table A2). This is consistent with other work that has 
estimated HW climates will increase Aboveground Net Primary Pro
duction (ANPP) and biomass for this region and globally (Mickler et al., 
2002: Mekonnen and Riley, 2023). Of note, the HD climate has twice the 
amount of end of 100-year warming as HW. Variability in 100-year 
biomass was greatest under the 5R scenario for all climates, while the 
unburned scenario displayed the least variable mean and IQR for 
100-year biomass (Appendix A1–5). No clear differences in biomass 
trends emerged between restoration and maintenance interval scenarios 
when compared to scenarios with comparable regular burn intervals.

Higher biomass on xeric sites was driven by increases in dominant 
white oak and mesic hardwood functional group biomass for all cli
mates, while lower biomass on mixed sites was driven by losses within 
the yellow pine, xeric hardwood, and mesic hardwood functional groups 
(Arthur et al., 2015; Brose et al., 2013). Increased percent composition 
of the white oak functional group suggests continued dominance, but 
losses of other xeric functional groups on xeric and mixed sites is 
consistent with the patterns of shifting species composition caused by 
mesophication (Flatley et al., 2015). Increases in the mesic hardwood 
functional group, specifically tulip poplar, may drive xeric functional 
group losses across a variety of Rx scenarios (Fig. 6). Complementary to 
our findings of increased white oak biomass in all scenarios, other works 
suggest that future conditions may favor oak functional groups, even 
under passive management, but active fire management will help to 
promote healthier, oak-dominated forest (Vose and Elliott, 2016; Rob
bins et al., 2024).

White oak, tulip poplar, and red maple young and intermediate 
biomass curves experienced the most climate variability under scenarios 
with the most fire (3R, 5R, 10R), which supports the need to further 

Fig. 5. Three-way ANCOVA interactions for seven prescribed fire scenarios, three climate scenarios, and three initial forest community classes.
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Fig. 6. Individual plots represent the Unburned (A) 3R20M (B) and 3R (C) Rx scenarios. For individual frames within plots, lines show mean biomass for each species 
across all timesteps (0, 20, 40, 60, 80, 100) with line type indicating climate. Individual frames are defined by one of three functional groups with the greatest 
biomass (Maples, Mesic Hardwoods, White Oak) and one of three initial forest community classes (mesic, mix, xeric) and by intermediate biomass 30–60 years of age 
(top row) or young biomass < 30 years of age (bottom row). Each species’ time 0 biomass is the same across all frames.
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monitor species response to future climate. No observed data span the 
length of our simulations or capture the same number of fires, but plot- 
level monitoring data have found after repeated fire (three or four 
prescribed fires) species’ responses are increasingly variable and may 
depend more on site characteristics (Jenkins et al., 2011; Schwartz et al., 
2016). Adaptive management priorities and objectives should be 
designed with these site-level differences in mind. Our findings suggest 
that continued mesophication, stabilization, or reversion to pre-fire 
suppression xeric-dominated composition depends most on the exist
ing forest community. Specifically, mixed and mesic sites will require 
increased fire use to reduce maples while mesic hardwoods (hickories, 
tulip poplars, ashes, red oaks, birches) may decline under most fire 
scenarios. The 5R and 10R fire scenarios yielded increases in young 
mesic biomass over the 100 years, which is consistent with other work 
that has shown small stems of red maples and other species resprouting 
with frequent fire particularly on more mesic sites, while white oaks 
tended to respond positively to more frequent fire on mixed and xeric 
sites (Arthur et al., 2015; Keyser et al., 2017). Of note, sharp declines in 
intermediate Chestnut Oak biomass observed in earlier years (0–40) are 
due to the composition of initial communities parameterized from FIA 
data. Most sites with Chestnut Oaks were initialized with Chestnut Oaks 
between 30–60 years of age, so these trees ‘age out’ of intermediate 
biomass within the first 40 years of the simulation. Declines in biomass 
are most pronounced on Mixed and Xeric sites, as Mixed and Xeric sites 
contain more than double and triple, respectively, the mean initial 
Chestnut Oak biomass of Mesic sites (275 g/m2) (Fig. 6). In turn, white 
oak functional group composition is projected to increase most on mesic 
and then mixed sites (Fig. 4). These compositional increases in white oak 
biomass did not correspond with increases in young or intermediate 
biomass for any fire scenario, which may indicate that increased white 
oak composition is due only to biomass gained by existing large trees not 
regeneration (Fig. 6, Appendix A10–14).

The mesic hardwood group stabilized and gradually increased in 
percent composition with fire every five years, which may be due to the 
mixed composition of more and less fire adapted species within the 
mesic hardwood functional group. The established functional groups are 
not monoliths - the mesic hardwood functional group includes a 
collection of species with different levels of fire adaptation (e.g., Quercus 
rubra vs. Liriodendron tulipifera) and some species that are not at all fire 
adapted (e.g., Betula allegheniensis) (Warwick, 2021). By aggregating 
into functional groups, we have averaged fire and climate responses that 
may be dissimilar enough to merit reevaluating the traits of individual 
species and exploring different groupings. Individual response to fire 
and anticipated responses to climate depend on co-occurring species and 
site characteristics (Schwartz et al., 2016; Vose and Elliott, 2016; Wal
drop et al., 2007), so a more in depth analysis of individual species and 
sites may yield additional variation in pyrotolerance and climate, 
beyond that characterized in Figs. 3–6.

Further separating the data by age and species showed that relatively 
few species drive biomass change within functional groups, and gener
ally, within the same functional groups, species responses were similar 
regarding the shape and magnitude of biomass change through time 
(Fig. 6). It is important to note that species’ growth and biomass accu
mulation is not directly related to the occurrence of fire but rather the 
decrease in competition for water and light following a fire. Competition 
for light is generally the limiting factor on regeneration and growth in 
this ecoregion, and prescribed fire directly reduces this competition by 
probabilistically (based on age, fire tolerance, and site conditions) 
removing cohorts in the under-, mid-, and overstory. Few species being 
responsible for biomass change is consistent with other field-based 
studies that have shown existing dominant species strongly influence 
future forest composition (Arthur et al., 1998), even with the intro
duction of prescribed fire and alternate climates (Table 4, Fig. 5). 
Though, these dominant species (red maple, tulip poplar, white oak, and 
chestnut oak) behaved differently across climate and Rx scenarios and 
within different communities (xeric, mixed, and mesic), which further 

emphasizes the need for tailored species- or site-specific management 
objectives.

4.1. Implications for managing forests with fire under variable climate 
conditions

Burning more than every 10 years was most likely to stabilize 
biomass or decrease it from initial levels, regardless of climate scenario 
(Fig. 2). Without fire, increased biomass can be attributed, in part, to 
infilling and densification of the forest under- and midstory (Nowacki 
and Abrams, 2008). But given broad forest management objectives to 
reduce fuels to limit wildfire risk and reduce forest density to promote 
forest resilience (drought, disease, etc.), fire every 10 years or more is 
necessary to meet these objectives. Our results support previous work 
that found fire intervals shorter than 10 years may reduce maple 
biomass and possibly shift forest composition in favor of more xeric 
species (Boerner et al., 2008; Keyser et al., 2019). Our results suggest 
that burning every five years or more has mixed effects on different sites. 
Burning more than every 10 years was required to decrease maple 
composition, while only the 3R Rx scenario increased composition of 
white pine, yellow pine, and xeric hardwoods (Fig. 3). We also found 
that more fires lead to the most variability in total biomass and species’ 
response to different climates (Figs. 3, 6, Appendix A1–2), further 
highlighting the need for adaptive management as we move into a future 
with more fire use.

Climate effects on total biomass and functional group percent 
composition were amplified over longer timescales (mid to late simu
lation) and these differences were most apparent within young biomass 
(<30 years) (Fig. 6). While we found a loss of total maple biomass on all 
sites under 5R, red maple young biomass doubled or more under hotter, 
wetter and historical climates (Fig. 6). Field-based studies confirm that 
mid- and understory red maples and other hardwoods will increase in 
stem density, largely due to resprouting following multiple fires 
(Blankenship et al., 2023; Harrod et al., 2000). This slower but consis
tent ‘release’ of young species biomass across all sites and climates—
most pronounced under the 5R, 3R10M, and 10R Rx 
scenarios—supports the need for maintaining a regular fire interval that 
creates open canopy, reduces competition for maturing trees, and pro
motes continued regeneration throughout the century (Fig. 6) (Brose 
et al., 2013; Vose and Elliott, 2016). Our models suggest fire as much as 
every three years is necessary to substantially reduce composition of 
maple biomass, but in turn, substantially decreases total site biomass, 
and ultimately, recruitment into the mid- and overstory (Fig. 3). Adding 
an additional age class of 0–5 years or 0–10 years would better highlight 
these changes in younger biomass due to stem regeneration, resprouting, 
and recruitment.

Young and intermediate biomass response is the longer-term indi
cator of forest composition in the absence of other major disturbances, 
which we have excluded here. Without fire, modeled young and inter
mediate age trees declined substantially in the last 50 years. This decline 
may be attributable to biomass ‘aging out’ of the age classes we desig
nated and indicating a steady progression of maturing trees, as well as 
densification or mesophication of forests limiting overall regeneration. 
However, in the case of the 3R Rx scenario, the precipitous drop and 
suppression of the intermediate biomass curve indicates that few young 
trees are being recruited, and the upward trends in most species’ young 
biomass may be due largely to increased resprouting following fire.

The pronounced decreases in total biomass modeled under the 3R 
scenarios are a combination of fire reducing existing mid-story cohorts 
and preventing regeneration and recruitment from seedlings to saplings, 
as well as non-fire related mature tree mortality occurring throughout 
the 100-year simulation. Field studies have observed losses in overstory 
and mid-story trees and minimal regeneration with fire every three years 
(Peterson and Reich, 2001; Waldrop, 2016; Knapp et al., 2022; Melcher 
et al., 2023). Previous work in northern oak savannahs observed a mean 
annual decrease in tree density of 2–8 % when burned every 2 to 4 years 
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for a decade and a mean annual decrease of 1–7 % for basal area 
(Peterson and Reich, 2001). Additionally, a field study in the southern 
Appalachians observed decreases in overstory basal area and stem 
density following three prescribed fires in one decade; overstory basal 
area decreased 1m2/ha, while overstory density decreased by more than 
one-third from 632 to 401 stems/ha (Waldrop, 2016). Other field studies 
focused on regeneration, recruitment, and altered canopy cover in 
temperate broadleaf forests indicate that fire free intervals may be 
necessary to promote regeneration and recruitment (Knapp et al., 2022) 
and early growing season burns can reduce canopy closure (Melcher 
et al., 2023).

Our modeled results suggest frequent fire may considerably alter 
forest structure. This generally parallels the field-based observations 
described above, particularly considering these studies rarely reference 
more than a decade of forest response to frequent fire. Modeling thirty- 
three fires in 100 years yields a more frequent and persistent fire regime 
than even the most fire-adapted species in this region would have 
evolved under and does not represent a likely fire management scenario. 
The probabilistic mechanism controlling cohort mortality within the 
SCF extension could overestimate loss of biomass relative to empirical 
conditions, as it may struggle to mimic the realistic patchiness of fire 
effects across a site. We suspect SCF may artificially inflate post-fire 
mortality, specifically for low severity fires as modeled here, for two 
main reasons 1) as more fires are simulated, even the most fire-adapted 
cohorts are more likely to experience random mortality due to the 
repeated exposure to fire and 2) entire cohorts are removed from the 
system, not randomly selected individual trees.

While this overestimate of young cohort mortality skews results to
ward large declines in biomass that may be magnified through time, we 
believe the fire management implications remain the same: frequent fire 
(<10 years) is needed to reduce mesophication and restore fire-adapted 
vegetation. Site and climate-specific adaptive management strategies 
must be revised as forest response to multiple treatments, disturbances, 
and climate pressures are learned. Specifically, additional long-term 
monitoring data at sites with repeated fires are needed to document 
changes in young biomass composition and shifts in overstory domi
nance to adaptively manage under different climate conditions and 
across a variety of managed sites.

Woody shrubs were not included among the 50 species we parame
terized for the LANDIS-II model. Species such as Rhododendron spp. 
(rhododendron) and Kalmia latifolia (mountain laurel) are of manage
ment interest because they are abundant in the mid- and understory on 
mesic (rhododendron) and xeric sites (mountain laurel) and have been 
associated with reduced tree seedling recruitment and survival, limited 
mature tree growth, and more difficult fire management (Dharmadi 
et al., 2022). Excluding these species means excluding positive 
ecosystem feedbacks, such as less flammable litter and less sunlight in 
the understory, that facilitate shifts in forest composition in the absence 
of fire (Nowacki and Abrams, 2008). Due to the minimal light and 
airflow that perpetuates damp conditions within these woody shrub 
stands and the generally less flammable fuel structure of more mesic 
species, fire managers may need to burn during the growing season and 
into drier summer and early fall conditions (typically outside of the 
management prescriptions in this region) to reduce woody shrubs and 
other mid-story mesophytic species (Alexander et al., 2021; Dickinson 
et al., 2016; Vaughan et al., 2022). Because we do not capture the effects 
of these species, we may overestimate the composition of modeled 
species, such as white oaks, and may minimize signs of widespread 
mesophication, even under the unburned scenario.

Current forest communities are inherently tied to prior management 
and disturbance, and so, the continued burning of previously managed 
sites is important to maintain fire-adapted communities and realize the 
full suite of benefits of prescribed fire use (Pile Knapp et al., 2024). For 
sites with little to no recent prescribed fire use, older, established trees 
represent a large proportion of biomass and are unlikely to be killed in 
low severity burns, preventing any near-term significant shifts in forest 

composition. However, promoting future fire-adapted forest commu
nities will require frequent fire (3–10 years) to control young and mid
story composition while forest succession progresses (Fig. 5). Frequent 
fire alone precludes young biomass regeneration, and so, consistent with 
other work, additional treatments (thinning, herbicides, etc.) in the mid- 
and understory, along with fire-free intervals, are likely necessary to 
promote regeneration of preferred species and avoid suppressing all 
regeneration and overstory recruitment from too much fire (Knapp 
et al., 2022; Cuprewich and Saunders, 2024; Pile Knapp et al., 2024; 
Turner et al., 2025).

Given the exclusion of natural disturbances (wildfire, wind, pests) 
from these simulations, our findings offer an experiment-based 
approach to quantify the estimated contribution of prescribed fires 
alone to shift forest composition under climate change. Field studies are 
rarely conducted without confounding disturbances that may be diffi
cult to control for or to isolate the effects of any given variable, so this 
simulation approach offers a scenario-based, quantifiable assessment to 
inform existing questions about how consistent burning at different 
frequencies could alter forest composition. The future of southern Ap
palachian wildland fire modeling and research should integrate long- 
term studies like we have presented here with long-term monitoring 
data. Scenario modeling of divergent prescribed fire and climate sce
narios, in the absence of complementary field data, provides a founda
tion for developing adaptive management objectives that incorporate 
uncertainty. Executing climate-adaptive forest management requires 
responding to trends in observed data, but with only a few decades of 
consistent monitoring data, the path to restoring more diverse, open 
forests includes consistent, low-to-moderate intensity prescribed fires at 
numerous managed sites.

5. Conclusion

This study uses a forest change model to simulate prescribed fire 
management strategies under different climate scenarios to explore 
alternate outcomes in future forest composition. It is the first known 
forest and fire modeling effort to focus solely on the outcomes of a range 
of prescribed fire regimes in the Southern Appalachian Mountains. 
Without extensive field-based observations over long time periods, 
process-based and stochastic modeling scenarios can help to bound 
possible future outcomes of prescribed fire and understand the relative 
impacts of climate, fire, and existing forest communities on future 
change. The results underscore the need for adaptive management and 
continued quality monitoring data that persist over long time horizons 
because the interactions between forest species composition, prescribed 
fire use, and climate are non-linear. These findings may guide the 
development of climate-adaptive fire management plans to meet forest 
health and restoration objectives by providing a blueprint for possible 
forest responses to long-term fire management and potential climate 
variations.
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