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Prescribed fire use has increased throughout the Southeastern U.S. and Southern Appalachian Mountains as an
effective tool for landscape-scale fuels reduction and ecosystem restoration, yet may become more difficult in
extreme weather conditions. The objective of this study is to assess long-term (100 year) forest response to
divergent scenarios of climate and prescribed burning initiatives. We modeled 48, 6.25 ha sites distributed
throughout western North Carolina that were selected by combining historical geospatial prescribed fire data and
input from regional fire managers. For eight functional groups of tree species, we simulated 21 scenarios
combining seven different prescribed fire intervals and three climate scenarios. We found that climate, burn
interval, and initial forest community composition affect total biomass and functional group composition, with
the least biomass occurring under hotter drier conditions and the greatest number of fires. Changes in functional
group composition were most influenced by the initial forest community, then number of fires, then climate.
Forest demographics were also sensitive to prescribed fire; young cohorts (<30 years) increased only when sites
were burned every 10 years or more frequently, while intermediate age cohorts (30-60 years) increased only
when burned every 5 years, regardless of climate and initial forest community. Our simulations and scenario
design help to discern the effect of varying climatic and weather conditions, fire management, and existing forest
composition on future forests. This work can be used to support fire and natural resource management planning
by exploring a range of uncertainty associated with different fire and climate conditions.

1. Introduction

In the wake of land management policies enacted in the early 1900's,
wildland fire was removed from and actively suppressed in most
terrestrial ecosystems in the United States for over a century (Hessburg
et al., 2019; Nowacki and Abrams, 2008). Critical landscape patterns
and processes that rely on frequent fire, such as forest and habitat het-
erogeneity (Saladyga et al., 2022), nutrient cycling (Knoepp et al.,
2009), floral and faunal diversity (Holzmueller et al., 2009), and
shade-intolerant plant species regeneration have been degraded or
supplanted due to lack of fire (Nowacki and Abrams, 2008). To address
these deficiencies, prescribed fire implementation has increased in
recent decades (Hiers et al., 2020; Kolden, 2019). Prescribed fire is a
widely used land management practice with critical ties to ecosystem
health and cultural values (Riley et al., 2018) and is critical for reducing
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wildland hazardous fuels and reducing wildfire risk, promoting more
resilient ecosystems, and restoring fire-adapted ecosystem function
(Agee and Skinner, 2005; Kolden, 2019). We focus here on forecasting
the effects of long-term prescribed fire use on forest composition in the
Southern Appalachian region of the United States.

The Southern Appalachian Mountains are characterized by diverse,
fire-adapted, temperate forests (Erlandson et al., 2021; Tripp et al.,
2019). Trees and other species in these upland hardwood forests evolved
with frequent (every 3 to 25 years), low to moderate intensity fires that
were ignited by lightning and Indigenous peoples, who managed forests
for multiple uses (e.g., hunting and foraging) and general land stew-
ardship (Abrams et al., 2021; Aldrich et al., 2010; He and Lamont, 2018;
Waldrop et al., 2007). Prior to fire exclusion in the late 19th and 20th
centuries, more frequent, low-to-moderate intensity fires maintained
less dense, more diverse, and more open forested ecosystems (Harrod
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et al., 2000). There is uncertainty about historical fire return intervals,
ignition sources, and how fire return intervals may have varied
throughout the region; however, there is general consensus that more
fire occurred in most of the Southern Blue Ridge before the early 1900's
(Brose et al., 2001; Van Lear and Waldrop, 1989).

The onset and duration of fire suppression in the 20th century shifted
forest structure and composition to more shade-tolerant and fire-
intolerant mesophytic species (Abrams and Nowacki, 2015; Flatley
etal., 2013, 2015). Mesophication is directly linked to the decline in oak
regeneration and recruitment into the overstory, loss of fire adapted rare
plant communities, and reduced biodiversity and forest heterogeneity
(Brose et al., 2001, 2013). The accumulation of mesophytic forest litter
limits shade-intolerant regeneration and understory biodiversity
because the litter characteristics and moist microclimate inhibit the
ignition and spread of lower intensity fires (Alexander et al., 2021;
Dickinson et al., 2016; Kreye et al., 2013). Furthermore, during long
periods of fire suppression, the formation of the organic soil layer (duff)
is more pronounced near xeric species than mesic ones, which can cause
more canopy decline via delayed mortality when fires consume this
organic soil layer and potentially damage mature tree fine roots, typi-
cally under more severe drought conditions (Robbins et al., 2022; Car-
penter et al., 2020). This positive feedback between forest composition
and reduced fire negatively impacts wildlife habitat and regeneration of
shade intolerant species (e.g., Quercus spp.) and raises long-term con-
cerns for forest water use and drought resilience, particularly with
increased climate variability (Caldwell et al., 2016; Hwang et al., 2020;
McQuillan et al., 2024; Roman et al., 2015).

Following nearly a century of fire exclusion, prescribed fire use has
increased substantially in the Southern Appalachians in recent decades,
as it is one of the most practical tools to promote fire adapted vegetation,
and ultimately, more climate resilient future forests. Fire adapted eco-
systems and climate resilience are directly linked. Fire adapted forests
burn more frequently at safer, lower intensities and promote climate
resilience by reducing hazardous fuel loads to increase public safety),
promoting fire-adapted oak and pine regeneration, improving wildlife
habitat, and increasing forest heterogeneity and plant diversity - all of
which improve ecosystem health and resilience(Elliott and Vose, 2010;
Harper et al., 2016; Lafon et al., 2017; Saladyga et al., 2022). Never-
theless, questions remain regarding how often prescribed fires are
needed to reset forest composition closer to a more fire-adapted state
and how forest and fire use dynamics respond under different projected
climatic conditions (Waldrop, 2016). Numerous field studies have been
conducted to understand forest response to single and repeat prescribed
fires (Keyser et al., 2017; Waldrop, 2016), varying burn intensities
(Saladyga et al., 2022; Schwartz et al., 2016; Vaughan et al., 2021), and
seasonality (Keyser et al., 2019; Melcher et al., 2023; Vaughan et al.,
2022). Prescribed fires have been shown to promote oak regeneration
and decrease overall sapling density (Brose et al., 2013); however, data
do not necessarily support species composition shifts of more mature
trees in response to low-intensity fires (Elliott and Vose, 2005, 2010) as
these shifts are difficult to monitor and detect over ‘shorter’ time periods
(years to a few decades).

In the Southern Appalachian region, general circulation climate
projection models suggest multiple degrees of warming over the next
century and increased precipitation variability. If these changes occur
and cause extreme weather, prescribed burn planning and imple-
mentation become more difficult. This includes potential shifting of
available prescribed burn days out of historical or known ‘burn win-
dows’ or changing the total number of available days to burn (Kupfer
et al., 2020; Mitchell et al., 2014). The need to manage landscapes for
change amidst short- and long-term uncertainties can benefit from
exploring tradeoffs and projected long-term outcomes of forest response
and resilience under different management actions and climate sce-
narios (Scheller, 2020). Uncertainties about how temperature and pre-
cipitation regimes may change could affect forest succession patterns,
raising questions about how the frequency and timing of prescribed
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burns may need to adjust to meet forest management goals (Hiers et al.,
2020). Exploring multiple scenarios of fire management and climate or
extreme weather patterns can support adaptive management by helping
to inform and develop new management objectives and identify metrics
for success, particularly in novel scenarios where no historical data exist
(Littell et al., 2011). Previous work has shown that restoring ecosystems
toward historic fire regimes (more frequent low-intensity fires) could
increase resilience to future wildfires and other disturbances (Kalies and
Yocom Kent, 2016).

To generate management-relevant results, we used a process-based
forest change and fire model, LANDIS-II (LANDdscape DISturbance
and Succession), to simulate forest composition under 21 modeling
scenarios with divergent prescribed fire and climate scenarios in the
Southern Blue Ridge Mountains of western North Carolina (Scheller and
Mladenoff, 2004; Scheller et al., 2007). To aid model parameterization
and assure management-relevance, we leveraged local wildland fire
managers’ knowledge to guide our simulations. We modeled scenarios
with regular prescribed fire intervals (e.g., fire every five years) and
restoration and maintenance intervals (i.e., where shorter, regular fire
intervals were applied in the first 15 years and then longer maintenance
intervals were adopted thereafter) (Warwick, 2021). We investigated
how different climate scenarios interact with different prescribed fire
intervals to affect forest composition using species and functional group
biomass as metrics. We identify the most important and interacting ef-
fects of current forest composition, climate uncertainty, and prescribed
fire management regimes on future forest composition and synthesize
our results into four key management takeaways.

2. Methods

We combined historical burn permit and occurrence data
(2010-2022), input from regional fire managers, and forest change
modeling under three different climate scenarios and seven 100-year
prescribed fire plans. We used the resultant 21 model scenarios to
evaluate how forest composition responded to different prescribed fire
regimes under different projected climate variations.

2.1. Study area

We modeled forest change across the Southern Blue Ridge Mountains
of western North Carolina (Fig. 1). This landscape contains high eleva-
tion mountains (~ 2000 m) and exposed ridges, as well as moist, pro-
tected coves at lower elevation. Due to elevation gradients and
topographic complexity, mean temperatures and mean precipitation
vary across the landscape within a relatively temperate year-round
climate. Mean July temperatures range from 19-25 °C and mean
December temperatures range from 0-5 °C. Mean annual precipitation
varies significantly throughout the region with some areas averaging
~100 cm/year, while other localized areas average twice that amount
(200-250 cm/year; PRISM Climate Group, 2024). The topographic
variability and temperate climate of the Southern Blue Ridge landscape
yields high forest biodiversity (Erlandson et al., 2021). Upland hard-
wood forests dominate western North Carolina and are mostly
comprised of oak, maple, pine, and hickory species. Other common
co-occurring species include tulip-poplar (Liriodendron tulipifera L.) and
American beech (Fagus grandifolia).

2.2. Historic prescribed fire data and fire manager engagement

We used prescribed fire history and burn permit data (2010-2022) to
map the locations of past prescribed burns and to identify areas in
western North Carolina that are likely to experience continued pre-
scribed fire use in the future. Fire history data consisted of geospatial
prescribed fire boundaries provided by federal and state agencies and
geospatial burn permit location data from the Southeast Prescribed Burn
Geodatabase (Tall Timbers Research Station, 2022); these data were
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Fig. 1. Hexagonally aggregated geospatial prescribed burn permit and burn
boundary data within high and intermediate fire use areas delineated by
regional fire managers. Hexagons are displayed within western North Carolina
and bounded by the eastern edge of the EPA Level III Southern Blue Ridge
Ecoregion (A). Model sites (n = 48) selected from hexagons in (A) using
stratified, semi-random sampling (B).

combined and known duplicates were removed to develop a single map
that estimated historic prescribed (Rx) fire density (Fig. 1A). Over the
course of two iterative online workshops, regional fire managers from
The Nature Conservancy, The North Carolina Wildlife Resources Com-
mission, and the Appalachian Consortium of Fire Managers and Scien-
tists used this Rx density map to further delineate parts of the landscape
thought to be high or intermediate fire use areas. Fire managers also
provided generalized Rx parameters (Table 1). The fire use area
boundaries and Rx parameters informed where and under what condi-
tions prescribed fires were ignited in the simulations.

2.3. Forest change and prescribed fire modeling (LANDIS-II)

We simulated prescribed fire use and forest change using LANDIS-II,
a spatially and temporally dynamic landscape change model (Scheller
et al., 2007). LANDIS-II uses grid cells that interact with one another to
simulate landscape processes and subsequent vegetation change in space
and through time. Cells were simulated at a 250-m by 250-m (~15.5
acres) resolution, and the model was run at an annual timestep for 100

Table 1

LANDIS-II social and climate-driven fire extension (SCF) model parameters used
to bound conditions when prescribed fires could occur during model
simulations.

Parameter Min Max Range

Temperature -1°C 26.5°C NA

Windspeed NA 32 kph. NA

Relative Humidity 20 % 60 % NA

Fire Weather Index (FWI) 5 22 NA

Seasonality NA NA 334 - 65
Day of Year
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years to capture forest succession, regeneration, dispersal, and mortality
for 50 tree species. Species were parameterized according to their life
history attributes (e.g., probability of establishment, longevity, age of
maturity, shade tolerance, dispersal, etc.); species parameters are
defined in Robbins et al. (2024) and are required inputs for LANDIS-II.
Species cohorts (age class) were assigned to each cell, and cells can
contain Multiple species across multiple age cohorts.

We initialized the model with near current forest conditions and
assigned tree species age cohorts to each cell using US Forest Service
Forest Inventory and Analysis (FIA) data (Gray et al., 2012). Each cell
within the study area was assigned site characteristics (e.g., aspect,
elevation, and soil composition) following Robbins et al. (2022, 2024).

We used the SCF (Social-Climate-Fire; Scheller et al., 2019), NECN
(Net Ecosystem Carbon Nitrogen Exchange; Scheller et al., 2011), and
Output Biomass (Scheller and Mladenoff, 2004) extensions to simulate
prescribed fire occurrences and subsequent changes in aboveground
living biomass. SCF simulates prescribed fire occurrences based on
model parameters for average Rx fire size, seasonality, expected number
of annual Rx fires, constraints on Fire Weather Index, and wind speed,
and a probabilistic map indicating eligible locations (Scheller et al.,
2019). LANDIS-II tracks cohorts, collections of similar aged trees of the
same species, instead of individual trees. Stochastic post-fire cohort
mortality is simulated using species fire-resistance curves which were
parameterized using a database of field observations of bark thickness,
DBH, and mortality from the Southern Appalachians (Cansler et al.,
2020). Because LANDIS-II tracks age-based cohorts, tree sizes are not
modeled, so an empirical model was fit for each species to relate bark
thickness to age. Cohort level mortality is then probabilistically assigned
by combining the effects of bark thickness and site level mortality, which
is a function of effective wind speed, soil clay percentage, evapotrans-
piration, and climatic water deficit. When a cohort dies, Leaf Area Index
(LAI) decreases and the cohort’s carbon and nitrogen are then accounted
for as dead biomass in NECN. Robbins et al. (2022) provides additional
SCF model parameterization and calibration. To isolate the effects of
prescribed fire, wildfires and other modeled disturbances (e.g., biolog-
ical disturbances, wind throw, harvest) were excluded.

NECN tracks ecosystem exchanges of carbon and nitrogen between
living biomass, dead biomass, and soil pools following the CENTURY
model (Parton, 1996). NECN models cohort establishment and growth
based on temperature and competition for available water, nitrogen, and
light. Cohort regeneration depends on temperature and availability of
water and light, while growth depends on species’ parameterized
response to Minimum Growing Degree Days, Maximum Growing Degree
Days, Minimum January Temperature, Maximum Allowable Drought,
Leaf Longevity, and estimates of Maximum Biomass. Species’ growth,
carbon, nitrogen, and lignin parameters were gathered from existing
LANDIS-II models, the TRY - Categorical Traits Dataset (Kattge et al.,
2012), FIA data, or other regional sources (Davis et al., 2009). Robbins
et al. (2022) provides additional information on parameterization and
calibration. The Output Biomass extension summarizes data from
NECN's total aboveground living biomass for every desired species and
age class at any user-specified timestep.

2.3.1. Climate

We used three climate projections: hotter and wetter (HW), hotter
and drier (HD), and a historical random (HIST). HW and HD, are the
highest emission projections (RCP8.5) and are downscaled to 4 km by 4
km from the Coupled Model Intercomparison Project (CMIP) 5 using
Multivariate Adaptive Constructed Analogs (MACA) data (Abatzoglou
and Brown, 2012). The 4 km by 4 km pixels are then spatially intersected
and averaged within the 10 climate regions (defined by clustering his-
toric 30-year temperature and precipitation normals; Robbins et al.,
2024) of the LANDIS-II landscape. This spatial differentiation allows for
different weather to be simulated daily in each of the 10 climate regions.
The MRI CGCM3 RCP 8.5 projection represents the HW projection, and
the HadGEM2 ES365 RCP 8.5 represents the HD projection. The HW and
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HD projections were selected to bound the range of climate conditions
that may shift forest composition under extreme future emissions and
divergent precipitation regimes. The HW projection is one of the wetter
global climate projections for the Southern Appalachian region over the
next 100 years and projects a 3 °C increase in mean temperature and a
mean increase of 60 mm/year in precipitation by 2100; the HD pro-
jection simulates extreme and prolonged droughts with a mean warming
of 7 °C and a mean decrease in precipitation of —177 mm/year by the
end of the century and has been used to evaluate forest change scenarios
in the study region (Robbins et al., 2024). The HIST scenario uses data
sampled from random years of GRIDMET weather data between 1979
and 2016 (Abatzoglou, 2013).

2.4. Scenario design and analysis

2.4.1. Site selection & simulations

To test the effects of different Rx frequencies and different climate
projections on forest composition, we evaluated 48 sites under 21 future
fire scenarios (Table 2). The 48 sites were selected from within high and
intermediate fire use areas where prescribed fires have previously
occurred or were permitted (Fig. 1A,B). The precision of the geospatial
fire history data varied, so we aggregated all information to coarser
hexagons for the final historical Rx density map. To select modeled sites
based on historical prescribed fire use, we identified groups of four or
more contiguous hexagons where historical Rx data occurred. From
these contiguous groups of hexes, a random hex was selected (if the
group contained >10 hexes, two random hexes were selected). Within
each site hexagon, a contiguous group of 3 x 3 (9 total) 250x 250 m cells
were selected to delineate an average sized burn site (~55 ha) based on
fire manager input (Table 1). Therefore, selected hexagons and modeled
cells contained representative, not exact, sites of previous prescribed
fires.

In addition to a scenario with no prescribed fire, we modeled six Rx
management plans for each site belonging to two categories: regular burn
intervals and restoration + maintenance burn intervals (Table 2). The
regular interval Rx frequencies provide a comparison for the restoration
and maintenance intervals which are a common management approach
(Warwick, 2021). Each of these management scenarios was run under
three climate projections for a total of 21 future fire scenarios (with 3
replicates each for 63 total simulations). LANDIS-II generally does not
require a large number of replicates due to components of the model that
tend to converge to a mean value when measured over many sites and
long time periods (e.g., Loudermilk et al., 2014; Inglis and Vukoma-
novic, 2020). We ran each model scenario for 100 years and prescribed
fire seasonality was held constant in all scenarios with burns only
occurring in the dormant season (early December to early March) at low
intensities. This reflects the most active season for prescribed fire in this
region, and when held constant, allows for more straightforward com-
parisons across modeling scenarios (Van Lear and Waldrop, 1989).

Table 2
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2.4.2. Measuring changes in forest composition

Across these 63 simulations, we tracked aboveground living biomass
for 29 species at 20-year intervals (years 0, 20, 40, 60, 80, 100). Within a
single cell, biomass in year O is identical across all simulations. We
summarized forest composition combining aboveground living biomass
into two main groups—xeric species and mesic species—as defined by
eight functional groups (adapted from Flatley et al., 2015; Robbins et al.,
2024). Five functional groups (white oak, xeric red oak, xeric hardwood,
yellow pine, and white pine) were defined as xeric, while three func-
tional groups (maple, mesic hardwood, and hemlock) were defined as
mesic. We assigned the 29 most abundant species (of 50 total) to these
eight functional groups (Table 3).

We included species in the analysis if they were previously assigned a
functional group by Robbins et al. (2024) or if the importance score
ranked in the top 25 of 50 parameterized species based on basal area and
count derived from Forest Inventory Analysis (FIA) data. For example,
we added tulip-poplar, the third most important species, to the mesic
hardwood functional group, and we removed shagbark hickory from the
mesic hardwood functional group because it was ranked 46th in land-
scape importance. In total, we added nine species to the classifications
used by Robbins et al. (2024), guided by the functional groupings of
Flatley et al. (2015), and removed four species.

We aggregated forest composition data from the model replicates in
three ways. First, within each of the six timesteps (years 0, 20, 40, 60,
80, 100), we averaged biomass within the eight functional groups across
all cells for all scenarios and replicates. Second, to better understand the
effect of initial forest composition on response to fire and climate, we
assigned each cell to one of three categories, xeric-dominated, mesic-
dominated, or mixed, based on the initial (time zero) percent compo-
sition of xeric and mesic functional group biomass. We identified cells as
xeric-dominated if the five xeric functional groups contributed >66.7 %
of total cell biomass; we identified cells as mesic-dominated if the three
mesic functional groups contributed >66.7 % of total cell biomass; we
identified cells as mixed if neither the xeric nor mesic functional groups
comprised 66.7 % of total biomass. We classified 150 cells as xeric, 73
cells as mesic, and 173 cells as mixed. From here on, these are referred to
as initial forest community classes or classes. Third, to understand the
composition of young and intermediate aged trees that would comprise
the future forest canopy, we separated biomass into two age groups:
trees less than or equal to 30 years of age and trees between 30 and 60
years of age. Biomass within these age groups was output for the two or
three most abundant species (defined by initial biomass) within each
functional group: two maple species - Acer rubra (red maple) and Acer
saccharum (sugar maple); three mesic hardwood species - Carya alba
(mockernut hickory), Carya glabra (pignut hickory) and Liriodendron
tulipifera (tulip poplar); two species within the white oak functional
group - Quercus alba (white oak) and Quercus prinus (chestnut oak). We
selected age 30 as a cutoff for younger biomass for all functional groups
as it is an average age (near) sexual maturity for upland hardwood forest

Categories of Rx fire management plans (A) separated by burn intervals with abbreviations (B), fire frequency (C), and the total number of fires within all LANDIS-II
model runs (D) across 100 years. The description (E) of each management plan explains why it was selected for simulation.

A. Management Plan B. Scenario C. Fire Frequency D.D. Total Number of  E. Description of Management Plan Over 100 Years
Category Abbreviation Fires
No Fire Unburned NA 0 No fires occur. This scenario acts as a ‘control’.
Regular 3R 3-yr 32 Highest fire frequency to provide an upper bound for prescribed fire
use.
5R 5-yr 20 High fire frequency to simulate an actively managed site.
10R 10-yr 10 Moderate fire frequency closer to an “average” amount of fire for most
managed sites.
20R 20-yr 5 Lowest fire frequency used to provide a lower bound for prescribed
fire use on a managed site.
Restoration & 3R10M 3-yr x 4, followed by 10-yr 12 12 years of frequent fire followed by a shorter maintenance interval.
Maintenance interval
3R20M 3-yr x 4, followed by 20-yr 8 12 years of frequent fire followed by a long maintenance interval.

interval
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Table 3
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Functional groups (adapted from Robbins et al., 2024 and Flatley et al., 2015) are separated into xerophytic and mesophytic species groups and individual species are
classified into one of eight functional groups. *Indicates a species not included in Flatley et al. (2015).

Xerophytic Mesophytic
Yellow Pines ~ White Oaks Xeric Red Xeric Hardwoods White Pine  Maples Mesic Hardwoods Hemlock
Oaks
Pinus Quercus alba Quercus Nyssa sylvatica Pinus Acer rubrum Betula lenta Lirio- dendron Tsuga canaden-
echinata coccinea strobus tulipifera sis
Pinus Quercus montana Quercus Oxydendrum Acer Betula alleghen-sis ~ Magnolia macroph-
pungens (prinus) stellata arboreum saccharum ylla
Pinus rigida Quercus Robinia Carya alba Quercus falcata
velutina pseudoacacia
Pinus taeda*™ Sassafras albidum Carya glabra Quercus rubra
Pinus Fagus Grandi-folia
virginia*
Fraxinus Ameri-
cana
species (Jensen and Anderson, 2005).
3R 5R 3R10M 10R 3R20M 20R  Unburned

2.4.3. Evaluating effects of climate, fire, and forest composition on biomass
change

To quantify the relative contributions of climate, fire, and initial
forest community class on increased or decreased site-level meso-
phication, we used the three climate levels, seven fire levels, and three
initial forest community class levels as categorical ‘treatments’ and
included a continuous covariate, site biomass at time 0. We averaged
results across three replicates yielding 7583 observations across 396
sites and used change in mesic biomass percent composition (from time O -
100) as the response variable for three-way ANCOVA and PERMANOVA
(Anderson, 2017) tests with interactions. We conducted Tukey Honest
Significance Difference tests to understand significant interactions be-
tween factor levels.

We used nonparametric multivariate analysis of variance, or PER-
MANOVA, to corroborate our ANCOVA findings. For each treatment
group (e.g., modeled scenario), we had almost 400 observations that
yielded close to normally distributed residuals (Appendix A15), but the
variances across our treatment groups were not truly homogeneous,
necessitating a comparison of ANCOVA and PERMANOVA results. We
conducted the PERMANOVA tests using the ‘adonis2’ function with a
Euclidean distance matrix within the Vegan Community Ecology Pack-
age (v2.6-10) (Oksanen et al., 2025) in the R statistical language
(v4.2.1; R Core Team, 2022). PERMANOVA uses permutations (n = 999)
and pseudo-F statistics to estimate p-values; it leverages
between-observation distances to partition distance matrices among
multiple sources of variation and fits linear models using distance
matrices. This approach is recommended when multivariate normality
and homogeneous variance cannot be assured because it attempts to
differentiate statistical differences between different locations of a
group means versus differing amounts of dispersion around group means
(Anderson and Legendre, 1999).

3. Results
3.1. End of 100-year simulation total biomass - all scenarios

We assessed the percentage change in mean total biomass from time
0 to time 100 for all sites for each of the 21 modeled scenarios. Biomass
increased the most in the unburned scenario (HD: 16.2 %, HIST: 18.1 %,
HW: 29.4 %), while biomass decreased the most in the 3R scenario (HD:
—91.0 %, HIST: —82.6 %, HW: —66.8 %) (Fig. 2). HD (hotter, drier)
climate consistently yielded the lowest mean biomass at year 100 for all
Rx scenarios, except 5R, while HW (hotter, wetter) climate yielded the
greatest mean biomass. For all climate projections, the largest increase
in mean biomass between adjacent Rx scenarios occurred between the
3R and 5R, with 33 and 20 burns, respectively (Table A1). For HD and
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Fig. 2. Mean percent change from starting biomass (time 0) to end of 100-year
biomass (time 100) colored by climate scenario (hotter, drier - HD; historical —
HIST; hotter, wetter — HW). The number of fires in each Rx scenario increases
from left to right, with no fire in unburned.

HIST climate, biomass only increased under the 20R and unburned
scenario, five and no fires, respectively; for HW climate, biomass
increased for all Rx scenarios except 5R and 3R (Fig. 2).

3.2. Time-varying mean total biomass and percent composition by
functional group

We initialized 48 sites with ~12,000 g/m? mean cell biomass and
with the following functional group composition, by percent composi-
tion (averaged across all sites): white oak (30.2 %), mesic hardwood
(21.3 %), xeric red oak (13.5 %), maple (11.4 %), white pine (12.0 %),
xeric hardwood (4.6 %), yellow pine (4.7 %), and hemlock (2.3 %)
(Fig. 3).

Climate-induced differences in mean total biomass are most apparent
in later years of the simulations. Under HD climate and no fire, mean
total biomass decreased (~1000 g/m?) between year 80 and year 100
(Fig. 3, top left), while HW and HIST biomass stabilized; for the 3R Rx (i.
e. most fire) scenario, mean biomass under HD and HIST climate
decreased in all years while mean biomass for HW climate stabilized
between year 60 and year 100 (Fig. 3, top right). HD and HIST climate
only increased between year 80 and year 100 under the 20R Rx scenario
(Appendix A5). Generally, differences between HW climate and the
other two climates became more pronounced in later years.

Variability in cell biomass declined from time O for all Rx and climate
scenarios. The 5R Rx scenario was an exception, as biomass variability
increased for all climate scenarios from year 20 to year 100 (Appendix
Al). For all scenarios, end-of-100-year mean biomass for HW climate
was greater than the upper quartile of mean biomass in the HD climate
(Fig. 3, Appendix A1-5). Differences in mean biomass and interquartile
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0 biomass is identical for all panels.

range (IQR) were greatest between the 5R Rx scenario (20 fires, more
variability) and the unburned (no fires, less variability). For example,
the average IQR for all climate projections within the 5R Rx scenario is
5445 g/m?, while the average IQR within the control scenario is 1863 g/
m?, which is, on average, a 65.8 % reduction in the IQR between 20 fires
and no fires (Fig. 3, Appendix Al). The most fire scenario (3R) main-
tained relatively equal IQRs across climate scenarios from early to mid-
simulation, but the climate scenarios diverged between years 80 and 100
where the greatest difference in IQR across climates for any Rx scenario
was observed in year 100 (HW: 3907.5 g/m? and HD: 1085.0 g/m?)
(Fig. 3).

Across all climate projections, the unburned scenario (Fig. 3, bottom

left) experienced small but consistent increases in white oak, xeric red
oak, maple, and hemlock through time, with consistent decreases in
mesic hardwoods, xeric hardwood, and yellow pine. Without fire, xeric
hardwoods and yellow pine decreased considerably by year 40 and were
nearly eliminated by year 100 (Fig. 3, bottom left). Maples increased to
~20 % composition from their original composition (11.4 %) in the
early to middle years of the simulations and then decreased to near
initial percent composition, except under the HD climate, in which
maples end of 100-year biomass increased by ~5 % composition to a
total composition of 15 %. Mesic hardwoods decreased by about ~25 %
to year 40 under all climate scenarios and then stabilized until year 100.

The 3R Rx scenario experienced the greatest decline in percent
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composition of maples, xeric red oaks, and white pines, respectively.
Decreases in percent composition showed a small but clear response to
climate scenarios and declines were most pronounced from year 80 to
year 100 (Fig. 3, right). The white oak functional group increased
through time and across all climate projections from 30.2 % initial
composition to year 100 % composition of 39-47 %. With fire every
three years, xeric hardwoods and yellow pine functional groups declined
in the middle of the simulations but increased in percent composition
toward the end of the century under all climate projections (Fig. 3,
bottom right). With frequent fire, mesic hardwoods declined less than
under the unburned scenario.

3.3. 100-year change in functional groups

We synthesize mean changes in percent functional group composi-
tion by comparing time zero mean biomass with mean biomass at time
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100 across all functional groups, modeling scenarios, and initial forest
community classes (Fig. 4). We chose to report change in percent
composition, instead of percent change, so as not to inflate the impor-
tance of increases in functional groups with less biomass or decrease the
importance of change in functional groups with more biomass. For
example, a change in percent composition from 2 % to 3 % is equivalent
to a change of 1 % not 50 %.

Percent total biomass composition varied with prescribed fire (3R,
5R, 3R10M, 10R, 3R20M, 20R, unburned), climate (hotter, drier; his-
torical; hotter, wetter), and initial forest community class (xeric, mixed,
mesic). Generally, xeric functional groups (top five rows of an individual
grid) declined (1 - >15 %) or remained the same under all climate
scenarios, except in mesic initial communities where xeric red oak and
white pine biomass increased under all fire scenarios. The white oak
functional group is an exception, as it behaved differently than all other
xeric functional groups. White oaks increased the most (5 - >15 %) of all

HIST HW

Change in
Percent
- Composition

- 20%or >

i - ]

L - 20%or <

RX Scenario

Fig. 4. Nine heatmaps (blue = increase, red = decrease) showing average change in total biomass percent composition between year 0 and year 100 for the eight
functional groups (y-axis, individual grid) across the seven Rx scenarios (x-axis, individual grid) within the same climate projection (columns) and initial forest
community class (rows). Xeric functional groups comprise the top five rows of each individual grid and mesic functional groups the bottom three rows.
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eight functional groups under all climate projections, but biomass in-
creases were generally smaller in scenarios with fewer fires, except in
mesic communities where little to no response to the amount of fire was
detected and biomass increased considerably (12 - >15 %). Notably, the
only increases in biomass for xeric hardwoods and yellow pine occurred
when burned every three years. Changes in xeric functional groups’
biomass, both increases and decreases, varied more across the three
initial forest community classes than across the three climate scenarios.

The three mesic functional groups (bottom three rows of an indi-
vidual grid) responded dissimilarly to prescribed fire, climate, and
initial forest community class. Maple and hemlock biomass clearly
responded to the number of prescribed fires within the functional group
individual row, while changes in mesic hardwood biomass were largely
driven by the initial forest community class, as shown by increase or
decreases driven by the xeric, mixed, and mesic heatmap rows. Mesic
hardwoods increased (4 - >15 %) under all climate and fire scenarios in
xeric communities and decreased (3 - >15 %) under all climate and fire
scenarios in mixed and mesic communities. Unique from any other
functional group, maples showed a ‘negative-to-positive’ pattern of
change from the most to no fire scenarios, respectively. Maples only
decreased under HW climate in xeric communities. Hemlock biomass
mostly increased gradually for all communities and climates in response
to decreasing amounts of fire. The greatest increases (~7 %) occurred
under HIST and HW climates in scenarios with minimal to no fire, and
the least change and muted response to the amount of prescribed fire
occurred under HD climate in xeric communities.

Of the three independent factors and covariate - climate, fire, initial
forest community class, and starting biomass, respectively - the factorial
ANCOVA indicated that initial forest community had the largest effect
on change in percent composition of mesic biomass, followed by starting
biomass, fire, and climate (Table 4). All main effects were significant (P,
0.000), and there were significant (P, 0.000 — 0.05) but smaller in-
teractions among all factors; the three-way interaction between climate,
fire, and initial forest community had the smallest effect. The in-
teractions including class and fire had larger effects than those with
climate (Table 4); in turn, change in percent of mesic biomass compo-
sition was most stratified by initial forest community class, followed by
fire and finally climate (Fig. 5).

The Tukey Honest Significant Difference (Tukey HSD) test showed
the factor level relationships likely responsible for the significance in
interactions by evaluating pairwise comparisons of all levels within each
factor. For initial communities, all pairwise comparisons were signifi-
cantly different when evaluating change in percent mesic biomass
composition (Table A3). For climate, HW-HD (P, 0.001) and HD-HIST
(P, 0.05) were each significantly different, while differences in HW-
HIST were not significant (Table A2). For prescribed fire, comparisons
involving the scenarios with the most fire (3R, 5R) were all significantly
different. Comparisons of the unburned simulations to both the 20R and

Table 4

Summary of three-way ANCOVA using a single continuous covariate (Total_-
BM_Start; year O total biomass) to assess the effect of three factors - climate
projections (Climate), prescribed fire (Rx), and initial forest community class
(Class) - on percent change in mesic biomass. Significance indicated as: 0 (***),
0.01 (**), 0.05 (*), >0.1 (not significant).

Term DF Sum Sq. Mean Statistic p-
Sq. value

Total BM_Start 1 9.8681 9.8681 262.6939 0.0000
Climate 2 0.9649 0.4825 12.8436 0.0000
Rx 6 13.0562 2.1760 57.9272 0.0000
Class 2 108.2293 51.1147 1440.5586 0.0000
Climate : Rx 12 1.3650 0.1137 3.0280 0.0003
Climate : Class 4 0.3223 0.0806 2.1449 0.0726 .
Rx : Class 12 2.4262 0.2022 5.3821 0.0000 e
Climate : Rx : 24 1.5842 0.0660 1.7572 0.0125  *

Class
Residuals 8252  309.9868  0.0376
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3R20M simulations were not significantly different, while pairwise
comparisons of low to moderate fire simulations (20R, 3R20M, 3R10M,
and 10R) yielded mixed results of both significant and not significant
differences (Table A4). Notably, 20R was significantly different from
both the 3R10M and 3R10M, while 10R was not significantly different
from either scenario modeling restoration and maintenance burn
intervals.

Both the ANCOVA and PerMANOVA identified initial forest com-
munity class as the most important and highly significant factor
impacting change in percent mesic biomass (Tables 4, A2). Prescribed
fire was second most important followed by climate — all factors and
interactions were significant (Table 4). Because significant interactions
occurred and often suggest that relationships between factor levels (i.e.,
climate: HW, HD, HIST) are not stationary, we conducted a Tukey HSD
test to explore differences between factor levels. Factor importance and
interactions, along with their significance results, were consistent be-
tween ANCOVA and PerMANOVA (Tables 4, A5). Both tests identified
significant differences between the three initial forest community clas-
ses (Tables A3, A7). However, ANCOVA and PerMANOVA disagreed in
their identification of significant pairwise factor level comparisons for
climate and prescribed fire scenarios. For climate, PerMANOVA results
were inverse of that for ANCOVA. HW-HIST was the only significantly
different comparison (Tables A2, A6). For fire, the only insignificant
comparisons identified by PerMANOVA were Unburned-20R and
3R20M-10R (Tables A4, A8).

3.4. Forest demography response to Rx & climate scenarios

The biomass responses of young trees (<30 years) to climate and Rx
scenarios differed from that of intermediate age trees (30-60 years) for
all species we investigated based on (1) general shape of the biomass
curve through time, (2) timing of biomass local minima and maxima,
and (3) end of 100-year biomass (Fig. 6). These three parameters varied
most by functional group and species, but initial forest community class
and climate increased biomass variability within a given burn scenario.

For all species, young trees comprised a small fraction of initial
biomass, which increased as young cohorts aged and grew. Young trees
were more likely to gain biomass up to one, or two, mid-simulation
peaks and then decline relatively symmetrically toward the end of the
simulation, with the exceptions of young trees under the 3R and 5R
scenarios which varied more in response to more fires (Fig. 6C, Ap-
pendix A11). The maximum mean young biomass occurred under the
3R20M prescribed fire scenario and was just under 600 g/m? in year 40
(white oak, xeric -Fig. 6B). Intermediate-age tree biomass declined from
its initial biomass in all scenarios for all species on all sites; though,
under all but the most-fire scenarios, intermediate biomass experienced
a local maximum around year 60.

For a given species and age class, less inter-climate variability in
mean biomass occurred in the unburned than in the 3R20M and 3R
scenarios (Fig. 6). Mesic and mixed sites yielded slightly greater biomass
for both young and intermediate-aged maple species and mesic hard-
wood species, while xeric sites yielded the greatest biomass for white
oak species. Red maple, tulip poplar, white oak, and chestnut oak
contributed most to young and intermediate-aged biomass, with the
greatest biomass occurring under scenarios with moderate amounts of
fire (3R10M, 10R, 3R20M). For sugar maples and hickories, young and
intermediate cohorts generally required moderate to frequent amounts
of fire to gain any biomass throughout the 100-year simulation, but
young sugar maples declined under the most frequent fire scenarios (3R
& 5R) (Fig. 6, Appendix A11-14).

4. Discussion
Natural resource managers are challenged with managing forests

under climate uncertainty (Hwang et al., 2020; McQuillan et al., 2024),
and there is consensus that increasing prescribed fire use is a key
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Fig. 5. Three-way ANCOVA interactions for seven prescribed fire scenarios, three climate scenarios, and three initial forest community classes.

component of promoting more diverse, wildfire-resilient, and healthy
future forests (Elliott and Vose, 2010; Harper et al., 2016; Lafon et al.,
2017; Saladyga et al., 2022). But, restoration and maintenance of forest
communities is made challenging by the interacting effects of current
forest composition, climate uncertainty, and prescribed fire manage-
ment regimes. Here, we identify four specific findings relevant to fire
managers from this work: (1) burning more than every 10 years is
required to reduce biomass, while burning more than every five years is
required to promote pine and xeric hardwoods, (2) hotter, drier climate
may present unique fire management considerations particularly with
frequent fire use (<10 years), (3) future forest composition is most
dependent on the current forest community, followed by prescribed fire,
and then climate and, (4) it is necessary to understand co-occurring
changes and treatment effects on total, intermediate, and young
biomass to develop future climate-adaptive forest management
strategies.

In this study, the current forest community was the single most
important determinant of future forest composition, outweighing pre-
scribed fire use and climate as the second and third most impactful,
respectively (Table 4, Fig. 5). Therefore, managing future forests may
depend most on current stand composition and prescribed fire regime
and less on future climate variability. Attempting to restore pre-fire
suppression forest communities under moderate prescribed fire use
will take longer than the career of any natural resource manager. While
it is possible to achieve more dramatic changes in biomass and sub-
stantially reduce mesic species with frequent burns (3-5 years) (Fig. 4),
higher burn frequencies are difficult to achieve over large spatial extents
with existing barriers to prescribed fire and will ultimately present
tradeoffs between reducing biomass, carbon storage, and forest regen-
eration (Smithwick et al., 2024; Martin et al., 2015; McDowell et al.,
2021). Though, future climate does directly impact total biomass, under
all prescribed fire scenarios, and underscores the need for long-term
monitoring of forest response to inform adaptive fire management
(Figs. 2, 3). The trend of forest mesophication has taken hold in less than
a century, but fire-adapted forests evolved over millennia and will take
time to shift toward more open, less mesophytic forests that are

characteristic of pre-fire suppression conditions.

Comparing aboveground forest biomass trajectories under different
climates for the same prescribed fire management scenario provides a
metric for climate’s influence on increasing or decreasing the amount of
biomass on the landscape. We found end-of-100-year biomass increased
most from starting biomass under hotter, wetter (HW) climate, with less
pronounced differences between hotter, drier (HD) and historical (HIST)
climate (Fig. 2, Table A2). This is consistent with other work that has
estimated HW climates will increase Aboveground Net Primary Pro-
duction (ANPP) and biomass for this region and globally (Mickler et al.,
2002: Mekonnen and Riley, 2023). Of note, the HD climate has twice the
amount of end of 100-year warming as HW. Variability in 100-year
biomass was greatest under the 5R scenario for all climates, while the
unburned scenario displayed the least variable mean and IQR for
100-year biomass (Appendix Al1-5). No clear differences in biomass
trends emerged between restoration and maintenance interval scenarios
when compared to scenarios with comparable regular burn intervals.

Higher biomass on xeric sites was driven by increases in dominant
white oak and mesic hardwood functional group biomass for all cli-
mates, while lower biomass on mixed sites was driven by losses within
the yellow pine, xeric hardwood, and mesic hardwood functional groups
(Arthur et al., 2015; Brose et al., 2013). Increased percent composition
of the white oak functional group suggests continued dominance, but
losses of other xeric functional groups on xeric and mixed sites is
consistent with the patterns of shifting species composition caused by
mesophication (Flatley et al., 2015). Increases in the mesic hardwood
functional group, specifically tulip poplar, may drive xeric functional
group losses across a variety of Rx scenarios (Fig. 6). Complementary to
our findings of increased white oak biomass in all scenarios, other works
suggest that future conditions may favor oak functional groups, even
under passive management, but active fire management will help to
promote healthier, oak-dominated forest (Vose and Elliott, 2016; Rob-
bins et al., 2024).

White oak, tulip poplar, and red maple young and intermediate
biomass curves experienced the most climate variability under scenarios
with the most fire (3R, 5R, 10R), which supports the need to further
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monitor species response to future climate. No observed data span the
length of our simulations or capture the same number of fires, but plot-
level monitoring data have found after repeated fire (three or four
prescribed fires) species’ responses are increasingly variable and may
depend more on site characteristics (Jenkins et al., 2011; Schwartz et al.,
2016). Adaptive management priorities and objectives should be
designed with these site-level differences in mind. Our findings suggest
that continued mesophication, stabilization, or reversion to pre-fire
suppression xeric-dominated composition depends most on the exist-
ing forest community. Specifically, mixed and mesic sites will require
increased fire use to reduce maples while mesic hardwoods (hickories,
tulip poplars, ashes, red oaks, birches) may decline under most fire
scenarios. The 5R and 10R fire scenarios yielded increases in young
mesic biomass over the 100 years, which is consistent with other work
that has shown small stems of red maples and other species resprouting
with frequent fire particularly on more mesic sites, while white oaks
tended to respond positively to more frequent fire on mixed and xeric
sites (Arthur et al., 2015; Keyser et al., 2017). Of note, sharp declines in
intermediate Chestnut Oak biomass observed in earlier years (0-40) are
due to the composition of initial communities parameterized from FIA
data. Most sites with Chestnut Oaks were initialized with Chestnut Oaks
between 30-60 years of age, so these trees ‘age out’ of intermediate
biomass within the first 40 years of the simulation. Declines in biomass
are most pronounced on Mixed and Xeric sites, as Mixed and Xeric sites
contain more than double and triple, respectively, the mean initial
Chestnut Oak biomass of Mesic sites (275 g/mz) (Fig. 6). In turn, white
oak functional group composition is projected to increase most on mesic
and then mixed sites (Fig. 4). These compositional increases in white oak
biomass did not correspond with increases in young or intermediate
biomass for any fire scenario, which may indicate that increased white
oak composition is due only to biomass gained by existing large trees not
regeneration (Fig. 6, Appendix A10-14).

The mesic hardwood group stabilized and gradually increased in
percent composition with fire every five years, which may be due to the
mixed composition of more and less fire adapted species within the
mesic hardwood functional group. The established functional groups are
not monoliths - the mesic hardwood functional group includes a
collection of species with different levels of fire adaptation (e.g., Quercus
rubra vs. Liriodendron tulipifera) and some species that are not at all fire
adapted (e.g., Betula allegheniensis) (Warwick, 2021). By aggregating
into functional groups, we have averaged fire and climate responses that
may be dissimilar enough to merit reevaluating the traits of individual
species and exploring different groupings. Individual response to fire
and anticipated responses to climate depend on co-occurring species and
site characteristics (Schwartz et al., 2016; Vose and Elliott, 2016; Wal-
drop et al., 2007), so a more in depth analysis of individual species and
sites may yield additional variation in pyrotolerance and climate,
beyond that characterized in Figs. 3-6.

Further separating the data by age and species showed that relatively
few species drive biomass change within functional groups, and gener-
ally, within the same functional groups, species responses were similar
regarding the shape and magnitude of biomass change through time
(Fig. 6). It is important to note that species’ growth and biomass accu-
mulation is not directly related to the occurrence of fire but rather the
decrease in competition for water and light following a fire. Competition
for light is generally the limiting factor on regeneration and growth in
this ecoregion, and prescribed fire directly reduces this competition by
probabilistically (based on age, fire tolerance, and site conditions)
removing cohorts in the under-, mid-, and overstory. Few species being
responsible for biomass change is consistent with other field-based
studies that have shown existing dominant species strongly influence
future forest composition (Arthur et al., 1998), even with the intro-
duction of prescribed fire and alternate climates (Table 4, Fig. 5).
Though, these dominant species (red maple, tulip poplar, white oak, and
chestnut oak) behaved differently across climate and Rx scenarios and
within different communities (xeric, mixed, and mesic), which further
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emphasizes the need for tailored species- or site-specific management
objectives.

4.1. Implications for managing forests with fire under variable climate
conditions

Burning more than every 10 years was most likely to stabilize
biomass or decrease it from initial levels, regardless of climate scenario
(Fig. 2). Without fire, increased biomass can be attributed, in part, to
infilling and densification of the forest under- and midstory (Nowacki
and Abrams, 2008). But given broad forest management objectives to
reduce fuels to limit wildfire risk and reduce forest density to promote
forest resilience (drought, disease, etc.), fire every 10 years or more is
necessary to meet these objectives. Our results support previous work
that found fire intervals shorter than 10 years may reduce maple
biomass and possibly shift forest composition in favor of more xeric
species (Boerner et al., 2008; Keyser et al., 2019). Our results suggest
that burning every five years or more has mixed effects on different sites.
Burning more than every 10 years was required to decrease maple
composition, while only the 3R Rx scenario increased composition of
white pine, yellow pine, and xeric hardwoods (Fig. 3). We also found
that more fires lead to the most variability in total biomass and species’
response to different climates (Figs. 3, 6, Appendix Al-2), further
highlighting the need for adaptive management as we move into a future
with more fire use.

Climate effects on total biomass and functional group percent
composition were amplified over longer timescales (mid to late simu-
lation) and these differences were most apparent within young biomass
(<30 years) (Fig. 6). While we found a loss of total maple biomass on all
sites under 5R, red maple young biomass doubled or more under hotter,
wetter and historical climates (Fig. 6). Field-based studies confirm that
mid- and understory red maples and other hardwoods will increase in
stem density, largely due to resprouting following multiple fires
(Blankenship et al., 2023; Harrod et al., 2000). This slower but consis-
tent ‘release’ of young species biomass across all sites and climates—-
most pronounced under the 5R, 3R10M, and 10R Rx
scenarios—supports the need for maintaining a regular fire interval that
creates open canopy, reduces competition for maturing trees, and pro-
motes continued regeneration throughout the century (Fig. 6) (Brose
et al., 2013; Vose and Elliott, 2016). Our models suggest fire as much as
every three years is necessary to substantially reduce composition of
maple biomass, but in turn, substantially decreases total site biomass,
and ultimately, recruitment into the mid- and overstory (Fig. 3). Adding
an additional age class of 0-5 years or 0-10 years would better highlight
these changes in younger biomass due to stem regeneration, resprouting,
and recruitment.

Young and intermediate biomass response is the longer-term indi-
cator of forest composition in the absence of other major disturbances,
which we have excluded here. Without fire, modeled young and inter-
mediate age trees declined substantially in the last 50 years. This decline
may be attributable to biomass ‘aging out’ of the age classes we desig-
nated and indicating a steady progression of maturing trees, as well as
densification or mesophication of forests limiting overall regeneration.
However, in the case of the 3R Rx scenario, the precipitous drop and
suppression of the intermediate biomass curve indicates that few young
trees are being recruited, and the upward trends in most species’ young
biomass may be due largely to increased resprouting following fire.

The pronounced decreases in total biomass modeled under the 3R
scenarios are a combination of fire reducing existing mid-story cohorts
and preventing regeneration and recruitment from seedlings to saplings,
as well as non-fire related mature tree mortality occurring throughout
the 100-year simulation. Field studies have observed losses in overstory
and mid-story trees and minimal regeneration with fire every three years
(Peterson and Reich, 2001; Waldrop, 2016; Knapp et al., 2022; Melcher
et al., 2023). Previous work in northern oak savannahs observed a mean
annual decrease in tree density of 2-8 % when burned every 2 to 4 years
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for a decade and a mean annual decrease of 1-7 % for basal area
(Peterson and Reich, 2001). Additionally, a field study in the southern
Appalachians observed decreases in overstory basal area and stem
density following three prescribed fires in one decade; overstory basal
area decreased 1m?2/ha, while overstory density decreased by more than
one-third from 632 to 401 stems/ha (Waldrop, 2016). Other field studies
focused on regeneration, recruitment, and altered canopy cover in
temperate broadleaf forests indicate that fire free intervals may be
necessary to promote regeneration and recruitment (Knapp et al., 2022)
and early growing season burns can reduce canopy closure (Melcher
et al., 2023).

Our modeled results suggest frequent fire may considerably alter
forest structure. This generally parallels the field-based observations
described above, particularly considering these studies rarely reference
more than a decade of forest response to frequent fire. Modeling thirty-
three fires in 100 years yields a more frequent and persistent fire regime
than even the most fire-adapted species in this region would have
evolved under and does not represent a likely fire management scenario.
The probabilistic mechanism controlling cohort mortality within the
SCF extension could overestimate loss of biomass relative to empirical
conditions, as it may struggle to mimic the realistic patchiness of fire
effects across a site. We suspect SCF may artificially inflate post-fire
mortality, specifically for low severity fires as modeled here, for two
main reasons 1) as more fires are simulated, even the most fire-adapted
cohorts are more likely to experience random mortality due to the
repeated exposure to fire and 2) entire cohorts are removed from the
system, not randomly selected individual trees.

While this overestimate of young cohort mortality skews results to-
ward large declines in biomass that may be magnified through time, we
believe the fire management implications remain the same: frequent fire
(<10 years) is needed to reduce mesophication and restore fire-adapted
vegetation. Site and climate-specific adaptive management strategies
must be revised as forest response to multiple treatments, disturbances,
and climate pressures are learned. Specifically, additional long-term
monitoring data at sites with repeated fires are needed to document
changes in young biomass composition and shifts in overstory domi-
nance to adaptively manage under different climate conditions and
across a variety of managed sites.

Woody shrubs were not included among the 50 species we parame-
terized for the LANDIS-II model. Species such as Rhododendron spp.
(rthododendron) and Kalmia latifolia (mountain laurel) are of manage-
ment interest because they are abundant in the mid- and understory on
mesic (rhododendron) and xeric sites (mountain laurel) and have been
associated with reduced tree seedling recruitment and survival, limited
mature tree growth, and more difficult fire management (Dharmadi
et al., 2022). Excluding these species means excluding positive
ecosystem feedbacks, such as less flammable litter and less sunlight in
the understory, that facilitate shifts in forest composition in the absence
of fire (Nowacki and Abrams, 2008). Due to the minimal light and
airflow that perpetuates damp conditions within these woody shrub
stands and the generally less flammable fuel structure of more mesic
species, fire managers may need to burn during the growing season and
into drier summer and early fall conditions (typically outside of the
management prescriptions in this region) to reduce woody shrubs and
other mid-story mesophytic species (Alexander et al., 2021; Dickinson
etal., 2016; Vaughan et al., 2022). Because we do not capture the effects
of these species, we may overestimate the composition of modeled
species, such as white oaks, and may minimize signs of widespread
mesophication, even under the unburned scenario.

Current forest communities are inherently tied to prior management
and disturbance, and so, the continued burning of previously managed
sites is important to maintain fire-adapted communities and realize the
full suite of benefits of prescribed fire use (Pile Knapp et al., 2024). For
sites with little to no recent prescribed fire use, older, established trees
represent a large proportion of biomass and are unlikely to be killed in
low severity burns, preventing any near-term significant shifts in forest
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composition. However, promoting future fire-adapted forest commu-
nities will require frequent fire (3-10 years) to control young and mid-
story composition while forest succession progresses (Fig. 5). Frequent
fire alone precludes young biomass regeneration, and so, consistent with
other work, additional treatments (thinning, herbicides, etc.) in the mid-
and understory, along with fire-free intervals, are likely necessary to
promote regeneration of preferred species and avoid suppressing all
regeneration and overstory recruitment from too much fire (Knapp
et al., 2022; Cuprewich and Saunders, 2024; Pile Knapp et al., 2024;
Turner et al., 2025).

Given the exclusion of natural disturbances (wildfire, wind, pests)
from these simulations, our findings offer an experiment-based
approach to quantify the estimated contribution of prescribed fires
alone to shift forest composition under climate change. Field studies are
rarely conducted without confounding disturbances that may be diffi-
cult to control for or to isolate the effects of any given variable, so this
simulation approach offers a scenario-based, quantifiable assessment to
inform existing questions about how consistent burning at different
frequencies could alter forest composition. The future of southern Ap-
palachian wildland fire modeling and research should integrate long-
term studies like we have presented here with long-term monitoring
data. Scenario modeling of divergent prescribed fire and climate sce-
narios, in the absence of complementary field data, provides a founda-
tion for developing adaptive management objectives that incorporate
uncertainty. Executing climate-adaptive forest management requires
responding to trends in observed data, but with only a few decades of
consistent monitoring data, the path to restoring more diverse, open
forests includes consistent, low-to-moderate intensity prescribed fires at
numerous managed sites.

5. Conclusion

This study uses a forest change model to simulate prescribed fire
management strategies under different climate scenarios to explore
alternate outcomes in future forest composition. It is the first known
forest and fire modeling effort to focus solely on the outcomes of a range
of prescribed fire regimes in the Southern Appalachian Mountains.
Without extensive field-based observations over long time periods,
process-based and stochastic modeling scenarios can help to bound
possible future outcomes of prescribed fire and understand the relative
impacts of climate, fire, and existing forest communities on future
change. The results underscore the need for adaptive management and
continued quality monitoring data that persist over long time horizons
because the interactions between forest species composition, prescribed
fire use, and climate are non-linear. These findings may guide the
development of climate-adaptive fire management plans to meet forest
health and restoration objectives by providing a blueprint for possible
forest responses to long-term fire management and potential climate
variations.
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