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A B S T R A C T

This study used dense time-series satellite imagery, field data and historical streamflow records in a paired 
catchment approach to 1) estimate burn severity across a large ecoregion; 2) analyze vegetation recovery and 3) 
evaluate the effects of forest disturbance on annual water yield. While wildfire is an important driver of annual 
forest disturbance in Western United States, forest disturbance due to fire is infrequent in the Eastern United 
States. Changes in wildfire frequency and intensity amid climate variability are anticipated to increasingly 
impact forest ecosystems in regions with rare fire occurrence, and where fire effects on vegetation and watershed 
hydrology are under-studied. This research knowledge gap could impact managers that need dependable data 
and models to anticipate and plan for potential impacts on forested watersheds and water supply. Results from 
analysis of satellite time series within burned areas indicate post-fire vegetation decline and recovery in the 
largest wildfire perimeters. In a burned forested watershed, annual water yield was significantly impacted by 
forest disturbance, with an increase of up to 25 % in the years immediately following wildfire. These results are 
novel and significant for improving our understanding of infrequent wildfire impacts on vegetation recovery and 
water supply.

1. Introduction

Forests provide essential ecosystem services, including flowing water 
critical for the overall sustainability of a region and country (Valjarević, 
2024), reducing the impact of high intensity rainfall and erosion, impact 
water quality downstream, and contributing to rainfall through evapo
transpiration. As forests provide ecosystem services to expanding human 
populations, there is growing concern about decreased forest resilience 
amid disturbance compounded by climate change and variability. 
Emerging evidence suggests climate change contributes to significant 
disruption in forest ecosystems with the potential to alter forests beyond 
their potential ecological resilience, especially for temperate, tropical 
and arid forests (Seidl et al., 2017; Forzieri et al., 2022).

Drivers of forest disturbance can be related to natural (such as 
wildfire, drought, storms, tree pathogens,insect defoliators) or anthro
pogenic (such as harvesting, shifting agriculture) agents. The effects of 
forest disturbance can depend on possible interactions between distur
bance agents and the ability of forest ecosystems to survive and even 
recover from disturbance over time (Forzieri et al., 2022). Among forest 
disturbances, wildfire depends on interactions with climate, vegetation, 

terrain characteristics, and other factors, with the potential to cause 
lasting changes in forest ecosystems and resilience. The characteristics 
of vegetation are critical in determining fuel potential, with grassland 
and shrubland vegetation displaying lower fuel potential compared to 
forestland. Differences in tree age and species influence variability in 
fire burning potential (Vujović et al., 2024). Remote sensing, which 
includes satellite and aerial imagery, has a critical role in modern 
wildfire detection and characterization over large areas (Carta et al., 
2023), with possible data gaps in regions with frequent cloud cover 
(Chen et al., 2024). Remotely sensed data has been used extensively to 
delineate fire perimeters and to characterize fire effects, especially to 
derive important metrics such as burned area and burn severity (Meng 
and Zhao, 2017).

Remotely sensed data has been used extensively to characterize fire 
effects, especially to derive important metrics such as burned area and 
burn severity (Meng and Zhao, 2017). Monitoring post-fire vegetation 
recovery is critical to understanding conditions that promote post-fire 
forest ecosystem resilience (Meng et al., 2015, Pérez-Cabello et al., 
2021). However, widely used vegetation indices derived from remotely 
sensed data cannot easily distinguish between post-fire understory and 
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canopy vegetation recovery. Several studies found a relationship be
tween fire burn severity and post-fire vegetation recovery (Zhao et al., 
2016, Yang et al., 2017, Bright et al., 2019), with an initial variable 
increase in forest recovery by tree species and burn severity, under
scoring the importance of combining remotely sensed and field data to 
understand the effects of fire severity on short and long-term tree mor
tality (Meng et al., 2018).

Experimental studies that specifically consider vegetation recovery 
in post-wildfire catchment hydrologic recovery remain rare, due to 
practical challenges associated with designing an experiment with 
concomitant large, prescribed fires attempting to reproduce wildfire 
behavior and vegetation impacts. In addition, few of the catchments that 
have been historically impacted by wildfires were instrumented at the 
time of the wildfires, and therefore there is a limited sample of catch
ments where retrospective analysis of wildfire impacts on streamflow is 
feasible using existing methods and tools. Several studies, including a 
synthesis of model-based approaches to predict water yield following 
wildfire (Partington et al., 2022) found that although impacts vary 
spatially and by ecoregion and hydrologic regime, incorporating burn 
severity and vegetation recovery can significantly improve streamflow 
prediction following wildfires. The findings strongly suggest the need for 
additional data and tools to support research and improvements in un
derstanding the role of vegetation recovery and forest ecosystem resil
ience alongside post-wildfire catchment dynamics. This is particularly 
challenging in the case of infrequent wildfires, due to the lack of existing 
observations. Additionally, observed and predicted increased wildfire 
frequency could cause hydrological non-stationarity. This could impact 
the predictive power of existing models that rely on historical data re
cords. This study’s focus on understanding the impact of infrequent 
wildfires addresses this research gap and presents a rare opportunity to 
examine wildfire effects on vegetation and hydrologic recovery in the 
historically understudied Southern Appalachian Ecoregion.

Forest fires are infrequent in the Southern Appalachian/Blue Ridge 
Mountains Ecoregion (SAE) and therefore historically have not been 
considered a major driver of forest disturbance. The last period of SAE 
recorded widespread fires was associated with grazing and intense 
logging in the late 19th and early 20th century (Van Lear, 1989). 
However, historical evidence suggests that frequent -possibly annual - 
fires shaped forest development, population growth, and land use 
change across the SAE long before the early 20th century logging op
erations and subsequent fire exclusion (Lafon et al., 2017). The relative 
dominance of fire-adapted tree species, such as oak (Quercus) and pine 
(Pinus) and especially the presence of endemic fire-resistance pine spe
cies such as the Table Mountain pine (P. pungens), is considered as evi
dence supporting a higher frequency of forest fires (Lafon et al., 2017). 
In late 20th century and early 21st century, SAE’s forest composition has 
changed to favor mostly mesophytic (fire-intolerant) species, such as 
maples, in a shift from mostly xerophytic (fire-adapted) species (Elliott 
and Swank, 2008; Elliott and Vose, 2011). This shift in forest composi
tion occurred in the context of fire exclusion and climate change, and 
sometimes following outbreaks of tree diseases and insect defoliators, 
such as the Chestnut blight and the Eastern hemlock. Following a 
summer-long severe drought period, the 2016 SAE wildfire outbreak 
was unprecedented in the amount of area burned and the number of 
reported suppressed ignitions (Caldwell et al., 2020; Reilly et al., 2022; 
Eidenshink et al., 2007). Occurring in the context of vegetation transi
tion to mostly mesophytic species and increased variability, there is 
limited evidence regarding post-fire vegetation recovery and catchment 
dynamics in the SAE.

The purpose of this study was to enhance understanding of infre
quent wildfire impacts on vegetation and catchment hydrological dy
namics in the Southern Appalachian ecoregion. This study was focused 
on addressing the research knowledge gap through adapting methods in 
an under-studied region impacted by an infrequent wildfire event. This 
study had three objectives:1) to derive burn severity estimates based on 
dense remotely sensed image collections, informed by ground-based 

measurements for the entire SAE; 2) to characterize post-fire vegeta
tion recovery in wildfire-impacted areas; and 3) to evaluate possible 
post-fire hydrologic impacts in a watershed impacted by wildfire. The 
study represents a novel contribution to forest management through 
improved understanding of infrequent wildfire impacts on catchment 
dynamics. The study methods and findings enable managers to mitigate 
potential wildfire impacts in forested catchments, based on the ability to 
foresee and plan anticipatory catchment interventions.

2. Methods

2.1. Study area

The forests of Southern Appalachian/Blue Ridge Mountains Ecor
egion (SAE) located in Southeastern U.S (Fig. 1) record some of the 
highest levels of biodiversity in North America (Anderson et al., 2013; 
Whittaker, 1956). The region covers a total area of 41,000 square ki
lometers, with a length of more than 1100 kilometers including diverse 
mountain ecosystems across the states of Virginia, North Carolina, South 
Carolina, Tennessee, and Georgia (Fig. 1). SAE’s uniquely diverse forest 
ecosystems are characterized by a mix of coniferous trees, including a 
mix of pine (Pinus echinata) and deciduous oak forests at low elevations 
and a mix of mountain oak forests at moderate elevations (Arthur et al., 
2021). At the highest elevations, spruce, fir, and northern hardwood are 
the most dominant tree species (Whittaker, 1956). The ecoregion 
experienced a decrease in total coniferous forest area in recent years, 
partly due to insect defoliators (Simon, 2005). The hemlock wooly 
adelgid infestation resulted in high tree mortality for Eastern hemlock 
(Tsuga canadensis) (Reilly et al., 2022). Since the mid to late 1970s, 
mountain forests in the Southern Appalachian region have undergone a 
shift from mostly xerophytic to mostly mesophytic tree species, which 
could decrease total water yield within a watershed (Caldwell et al., 
2016).

2.2. Data and approach

This study used daily streamflow data for historical streamflow 
analysis and satellite image collections for pre and post wildfire vege
tation condition analysis within watersheds impacted by the 2016 
wildfires (Fig. 2, Methods).

2.3. Wildfire burn severity

Across the Southern Appalachian Ecoregion, 21 wildfire perimeters 
with areas ranging between 219 and 11,194 hectareas, with a total area 
of 55,532 ha from the publicly available Monitoring Trends in Burn 
Severity (MTBS) 2016 perimeters were used to filter image time series 
using the cloud computing platform Google Earth Engine (Gorelick 
et al., 2017). The Harmonized Landsat Sentinel-2 (HLS) (Masek et al., 
2021) surface reflectance and the Copernicus Harmonized Sentinel 
Level-1C orthorectified top-of atmosphere collection (European Space 
Agency, 2024; Gorelick et al., 2017) were accessed in Earth Engine over 
the entire Southern Appalachian Ecoregion for the growing season prior 
and following the 2016 wildfires (May-July 2016; May-July 2017). The 
Sentinel-2 Multi-Spectral Instrument (MSI) includes visible, near 
infrared and short-wave infrared bands. Frequent cloud cover in the 
Southern Appalachian Ecoregion may reduce the reliability of satellite 
data, thus Sentinel scenes at 30 m resolution were filtered by date and 
masked for < 20 % cloud presence in Google Earth Engine. The filtered 
image collection was reduced to a composite pixel value in each band 
representing the median value across all images in each pixel. The 
composite median reducer method mitigates quality issues related to 
residual cloud and shadow presence (Zhang et al., 2021). Advances in 
remote sensing enabled rapid wildfire detection from multiple plat
forms, including Landsat, Sentinel, NASA MODIS and Aqua. Future de
velopments and multi-sensor data (SAR, LIDAR, optical, hyperspectral, 
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optical) fusion offer the potential to detect and characterize wildfires 
with greater accuracy (Yang et al., 2024).

The Normalized Burn Ratio (NBR) is the most common metric used 
to identify wildfire impacts and combines near infrared (NIR) and short- 
wave infrared (SWIR) reflectance (Eq. 1). Due to post-fire changes in NIR 
and SWIR reflectance, NBR is commonly used to identify fire signals in 
multispectral imagery and to estimate wildfire effects on vegetation. To 
identify the possible effects of wildfire on vegetation, post-fire NBR is 
subtracted from pre-fire NBR to calculate the differenced NBR (Key and 
Nathan, 2006) for a pair of images over the area of interest. A modified 
ratio, the relative dNBR (RNBR, Eq. 2) was introduced to improve fire 
signal detection (Miller and Thode, 2007). The workflow for RdNBR 
calculation is presented in Fig. 3. 

NBR =
(NIR − SWIR)
(NIR + SWIR)

1) 

NIR, SWIR are near and shortwave infrared bands 

RdNBR =
(NBRprefire − NBRpostfire)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(|NBRprefire

√
|)

(2) 

RdNBR calculated programmatically in Google Earth Engine was 
compared with plot-derived Composite Burn Index (CBI) based on var
iables measured following the 2016 wildfires at select field plots in 
Camp Branch and Tellico wildfires (Caldwell et al., 2020). The rela
tionship between mean RdNBR derived from image collections and plot 
variables including tree mortality, basal area and char height was tested 
using Spearman’s rank correlation coefficient. Watershed-level RdNBR 
was classified in burn severity categories using watershed-level RdNBR 
ranges (Caldwell et al., 2020). Low and moderate burn severity 

categories were aggregated into one category, resulting in three burn 
severity categories: high, moderate, and low burn severity. Burn severity 
patches were further aggregated in contiguous patches with a minimum 
area of 5 ha. The level of agreement between plot-estimated burn 
severity and ecoregion mean RdNBR was evaluated with an accuracy 
matrix using a 10-meter buffer around plot locations.

Burn severity categories for the Southern Appalachian Ecoregion 
were combined with three elevation classes derived from the U.S 
Geological Survey 3D elevation program (USGS, 2020) at 1 m resolu
tion: high elevation (>1000 m), medium elevation (500–1000 m), and 
low elevation (<500 m).

2.4. Post-fire vegetation recovery

Post-fire vegetation recovery varies with pre-fire vegetation type, 
burn severity, topography and post-fire climate conditions (Meng et al., 
2018, Zhao et al., 2016, Bright et al., 2019). Quantifying vegetation 
recovery can be challenging, due to a gap in metrics and methods that 
can be adapted to track vegetation recovery at high temporal resolution 
post-fire. However, recent advances in cloud computing and the growing 
availability of dense time series of medium and high-resolution multi
spectral imagery provide new opportunities for estimating recovery 
(Bright and all, 2019).

Two of the most popular indices used in estimating fire effects and 
vegetation change are the NBR and the Normalized Vegetation Index 
(NDVI, Eq. 3). NDVI is widely used in analysis of multispectral imagery. 

NDVI =
NIR − RED
NIR + RED

(3) 

Fig. 1. Southern Appalachian Ecoregion and 2016 wildfire perimeters (red).
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A temporal segmentation algorithm, the Landsat-based detection of 
Trends in Disturbance and Recovery (Landtrendr) allows for fine-tuning 
of parameters to detect short and long-term changes in vegetation in
dexes over a Landsat time series and is well suited for detection of 
vegetation changes at fine time scales (Kennedy et al., 2010). The 
computationally intensive Landtrendr algorithm involves the creation of 
spectral trajectories across dense image series. A recent revision and 
implementation of Landtrendr in the cloud computing platform Google 
Earth Engine significantly reduces processing time and costs to identify 
breakpoints and spectral trajectories associated with forest disturbance 
over time (Kennedy et al., 2018).

The Landtrendr algorithm in Google Earth Engine was used to 
develop annual NBR and NDVI mean values and fitted values for all 
2016 wildfire perimeters. Fire patches corresponding to high and 
moderate burn severity from four wildfire perimeters with the highest 
burn severity were stratified by elevation classes (<500 m, 500–1000 m, 
>1000 m). Landtrendr fitted trajectories were calculated based on a 
spatial sample in stratified patches. NBR annual percentage from 
average pre-fire NBR values was used to estimate vegetation recovery. 
The NBR percentage for each year was calculated as the fitted annual 
value divided by the pre-fire mean NBR levels.

NBR and NDVI time series over select patches in four wildfire pe
rimeters with the highest burn severity were tested for significance of 
trends using Mann-Kendall or Kendall’s tau test (Mann, 1945; Kendall, 
1948). Mann-Kendall is used to test the null hypothesis that the data is 
independent and identically distributed in a time series. If the test results 
are significant, the null hypothesis is rejected and an increasing or 
decreasing monotonic trend is determined.

2.5. Historical streamflow analysis

Although the paired watershed approach historically led to critical 
hydrologic findings (Burt and McDonnell, 2015), this method requires a 

similarly long historical record of daily, quality-approved USGS refer
ence watershed (Lins, 2012) streamflow records across selected 
watersheds.

The watersheds most impacted by 2016 wildfires across the region 
are the headwaters of the Nantahala River and watersheds drained by 
Tallulah River, West Pigeon River, Lower Cartoogechaye, Tellico, 
Shooting Creek, and Betty Creek. However, fire perimeters rarely 
overlap with gauged watersheds, making analysis of fire effects on the 
streamflow regime extremely challenging. Across our study area, we 
found one gauged watershed with a continuous record of daily stream
flow pre-fire and post-fire that had more than 20 % of area within a 
burned perimeter. The 152.3 km2 Tallulah watershed above the USGS 
station 02178400 near Clayton, GA was selected for historical stream
flow analysis based on 35 % of its area within the Rock Mountain fire 
perimeter and the availability of historical data records. USGS historical 
daily streamflow data was accessed in R using the USGS data retrieval 
package (De Cicco et al., 2024) and the fasstr package (Goetz, Schwarz., 
2023).

2.6. Paired watershed analysis

Two empirical methods were used to examine possible hydrologic 
impacts following the 2016 wildfire in Tallulah River catchment. For 
both methods, the unburned watersheds Chattooga above the USGS 
station 02177000 and Hiwassee above the USGS station 03544970 were 
selected as reference watersheds in a paired watershed approach 
(Table 1, Fig. 4). The Rock Mountain fire perimeter overlaps with 35 % 
of Tallulah watershed’s area (Fig. 4).

All three watersheds are considered reference watersheds and thus 
have minimal anthropogenic flow alteration (Falcone, 2011).

Daily streamflow records from the pre-fire (2006–2016, Chattooga; 
2008–2016, Hiawassee) and post-fire (2016–2023) were used for the 
paired watershed analysis.

Fig. 2. Analytic methods overview.
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Fig. 3. RdNBR workflow.
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The first method, double-mass paired watershed analysis (Searcy 
andClayton, 1960; Biederman et al., 2015) is a visual method that 
compares the slope of cumulative flow in the burned watershed against 
the expected flow based on the relationship between streamflow in the 
two-watershed pre-fire. The difference between observed cumulative 
streamflow and the expected streamflow as annual residuals represents 
the streamflow effect of wildfire.

The second method involves developing a linear regression between 
the treatment (i.e., burned) and reference (i.e., unburned) watershed 
annual water yield (mm/year) prior to the treatment (fire), and using 
that relationship to estimate the expected annual water yield post- 
treatment in the treatment watershed had the treatment (fire) not 
occurred. Prediction intervals are then computed for each year at 
α= 0.05. Numerous examples can be found in the literature that use this 
method to evaluate the effect of forest disturbance, such as harvest 
treatment or other disturbance on annual water yield (Ford et al., 2011, 
Swank et al., 2014, Srivastava et al., 2020).

2.7. Analysis of streamflow trends

Historical streamflow records at USGS Tallulah station near Clayton 
were analyzed to develop a complete flow history and metrics to 
examine trends in daily recorded streamflow. Trends in over 50 
streamflow metrics were tested for significance using the Mann-Kendall 
non-parametric test of significance for the period prior and following the 
2016 wildfires. A Bayesian ensemble model for detection of change 

points in time series data (RBeast, Zhao et al., 2019) was used to analyze 
annual streamflow at Tallulah, Hiwassee, and Chattooga stations.

3. Results

3.1. Burn severity

The RdNBR model derived programmatically from time series of 
Sentinel imagery in Google Earth Engine was used to evaluate burn 
severity across the entire ecoregion.

Mean RdNBR was positively correlated with plot-measured tree 
mortality (rs=0.76) and basal area loss (rs=0.73). Threshold values for 
watershed-level RdNBR range (Caldwell et al., 2020) were used to 
classify burn severity, and the resulting moderate and low moderate 
classes were aggregated into a low burn severity class.

Modified threshold values were derived based on the distribution of 
RdNBR values at 60 plot locations, with values in the 25th percentile 
corresponding to the low severity class and values in the 75th percentile 
corresponding to the high severity class (Table 2).

Field-determined categorical burn severity at sampled plot locations 
in Tellico and Camp Branch fire perimeters was compared with burn 
severity derived from Sentinel-based RdNBR values. Categorical burn 
severity was compared using a 10-meter buffer around the plot loca
tions. For watershed-level thresholds (Caldwell et al., 2020), agreement 
with aggregated plot burn severity categories was 80 % for low severity, 
30 % for moderate severity, and 77 % for high burn severity categories. 

Table 1 
Watershed characteristics.

Watershed
Characteristics Tallulah 

(burned)
Chattooga 
(unburned)

Hiwassee 
(unburned)

Total area (ha) 15,125 53,613 10,230
Mean elevation (m) 885 759 868
Mean slope (%) 22 18 21
Aspect S S NW
Oak/Hickory Forest 

Group (%)
95 75 99

Mean water yield (Q, 
mm/year)

1002 947 1000

Fig. 4. Map of Tallulah, Hiwassee, and Chattooga watersheds.

Table 2 
Burn severity RdNBR thresholds.

RdNBR range (% agreement with 
plot categorical severity based on 
confusion matrix)

Burn Severity 
Categories

High Moderate Low

Thresholds based on 
Caldwell et al. 
(2020)

> 542 
(77 %)

62–541 (30 %) < 62 
(80 %)

Modified thresholds > 492 
(71 %)

201–491 (66 %) < 200 
(36 %)
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For modified threshold values, agreement with aggregated plot burn 
severity categories was 36 % for low severity, 66 % for moderate 
severity, and 71 % for high burn severity. Over 55 % of high burn 
severity areas were located at higher elevations, and 40 % at medium 
elevation.

A summary of the confusion matrix level of agreement for watershed- 
level thresholds and the modified RdNBR thresholds is presented in 
Table 2.

Burn severity was subsequently scaled up to the entire ecoregion 
using modified RdNBR thresholds for the three burn severity categories. 
Rock Mountain (18 %), Tellico (9 %), Camp Branch (29 %), and Chim
ney Tops (35 %) wildfire perimeters (Fig. 5) had the largest proportion 
of high burn severity areas within SAE fire perimeters overall. These 
perimeters are in a central SAE section (Fig. 5). Across all SAE fire pe
rimeters, 13 % of the area was burned at high severity, 30 % at moderate 
severity, and 55 % at low severity.

3.2. Post-fire vegetation recovery

Over a 23 years period, annual NBR shifted from significantly 
increasing during the pre-fire period to significantly decreasing post-fire 
in the Chimney Tops, Camp Branch, and Rock Mountain wildfire pe
rimeters (Table 3 and 4). Although indicative of vegetation recovery, 
significant increasing post-fire monotonic NBR trends do not differen
tiate between forest and other vegetation recovery, such as grass or 
shrubs.

Time-series analysis of vegetation indices indicate a decline in 
growing season vegetation growth one-two years post fire, followed by 
vegetation recovery to 95 % of the pre-fire levels at the two- and three- 
years mark. The NBR trajectories show a clear decline following the 
2016 wildfires for all major wildfire perimeters, with the largest 
magnitude in NBR decrease at Chimney Tops (Fig. 6). NDVI response is 
more muted, with only Chimney Tops showing a change in NDVI tra
jectory following the wildfires (Fig. 7). This is consistent with numerous 
studies indicating that NDVI is less sensitive to post-fire vegetation 
changes when compared to NBR (Bright et al., 2019, Pickell et al., 2016, 
Hislop et al., 2018).

Vegetation recovery is more nuanced when wildfire perimeters are 
classified by elevation classes and burn severity. Trajectories of esti
mated percentage of NBR recovery in stratified samples within four 
wildfire perimeters suggest relatively rapid recovery across all cate
gories and elevation classes (Fig. 8). Camp Branch, Chimney Tops, and 
Rock Mountain had the highest decline in post-fire vegetation growth. 
Recovery in areas of high burn severity at elevation classes > 1000 m 
and 500–1000 m was slower than for areas of moderate burn severity, 
with an estimated 20 % of the area pre-fire still unrecovered seven years 
following the wildfires.

Since the highest variability in dominant forest type/group was in 
the Rock Mountain wildfire perimeter, a second set of fire perimeter 
patches for Rock Mountain were stratified by burn severity, dominant 
forest type, and elevation class. In Tallulah watershed, a drop in pre-fire 
NBR is evident in 2017 immediately following wildfires, with the 
highest decrease in areas of high burn severity located at 500–1000 m. 
NBR recovery post 2017 was detectable in all burned areas in Tallulah/ 

Rock Mountain wildfire perimeter, with differences in the rate of re
covery between classes of different burn severity, elevation, and vege
tation/forest group (Fig. 9). The pine forest group within high burn 
severity areas had the most consistent upward trend following the first 
year after wildfire. Post-fire NBR recovery within the dominant Oak/ 
Hickory Forest group (Table 1) was similar for medium burn severity 
areas regardless of elevation, while stagnating until 2019 in areas of 
high burn severity. All burned areas showed similar recovery trends at 
five years following the wildfires. Five years post-fire, the NBR differ
ence from pre-fire NBR indicator of vegetation growth was less than 5 % 
in all burned areas (Fig. 9).

NBR indicative of vegetation growth returned to 95 % of pre-fire 
levels in all burned areas within five years and returned fully to pre- 
fire levels by year seven (Fig. 10).

3.3. Tallulah River historical streamflow analysis

The gauged Tallulah watershed provided an opportunity to examine 
potential impacts of the Rock Mountain fire on water yield and subse
quent recovery. Approximately 35 % of the gauged watershed was 
within the Rock Mountain fire perimeter, and approximately 13 % of the 
watershed area was burned at high severity (Figs. 4 and 9). Paired 
catchment analysis comparing the burned Tallulah and unburned 
Chattooga and Hiwassee watersheds revealed a departure from expected 
cumulative annual streamflow following the 2016 wildfire event 
(Fig. 11, double mass analysis). The null hypothesis tested states that the 
slopes are equal between regression lines for the expected and the 
observed streamflow in the years following the wildfire event. Based on 
analysis of covariance (Biederman et al., 2015), the null hypothesis was 
rejected, and the slopes are significantly different.

The fit between the annual water yield of the burned Tallulah 
watershed and the unburned Chattooga watershed in the pre-fire period 
(2006–2016) was determined using linear regression (equation 4, 
R2=0.92). Using this relationship and the annual water yield of the 
unburned Chattooga watershed, we estimated the expected annual 
water yield of the burned Tallulah watershed had the fire not occurred. 
The difference between the observed and expected water yield of the 
burned Tallulah watershed post-fire was then calculated (Fig. 12). These 
results show that a significant increase in annual water yield was 
observed in the burned Tallulah watershed in 2019, 2020, and 2021, 
after which the difference between observed and expected was not sig
nificant. The increase in annual water yield after the fire peaked in 2020 
at + 378 mm, or 25 % greater than expected. Recovery of annual water 
yield occurred by 2022, approximately six years after the fire and three 
years after the initial significant increase in water yield.

QTallulah= 0.7 ∗ QChattooga + 287.2 (equation 4) QTallulah is 
annual water yield for the burned watershed Tallulah and QChattooga is 
the annual water yield for the unburned Chattooga watershed

Similarly, the fit between the annual water yield of the burned Tal
lulah watershed and the unburned Hiwassee watershed in the pre-fire 
period (2006–2016) was determined using linear regression (equation 
5, R2=0.97). Using this relationship and the annual water yield of the 
unburned Hiwassee watershed, we found a significant increase in annual 
water yield in the burned Tallulah watershed in 2018, 2019, and 2020 
when compared with Hiwassee watershed. After 2020, the difference 
between observed and expected was not significant (Fig. 13). The annual 
increase in water yield after the fire peaked in 2020 at + 295 mm, or 
22 % greater than expected. Recovery of annual water yield occurred by 
2021, approximately five years after the fire and three years after the 
initial significant increase in water yield. The annual increase in water 
yield after the fire peaked in 2020 at + 295 mm, or 22 % greater than 
expected. Recovery of annual water yield occurred by 2021, approxi
mately five years after the fire and three years after the initial significant 
increase in water yield (Fig. 13).

QTallulah= 0.7 ∗ QHiwassee + 287.2 (equation 5) QHiwassee is the 
annual water yield for the unburned watershed Hiwassee

Table 3 
Mann-Kendall test results for NBR and NDVI fitted values (2000–2016) in 2016 
burned perimeters –Chimney Tops, Tellico, Camp Branch, and Rock Mountain.

Wildfire NDVI fitted 
tau

NDVI 
pvalue

NBR fitted 
tau

NBR fitted 
pvalue

Chimney 
Tops

− 0.05 0.822 − 0.667 0

Tellico 0.7 0 0.067 0.753
Camp Branch 1 < 0.0001 − 0.517 0.006
Rock 

Mountain
0.667 0 − 0.783 < 0.0001
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Results from a change point detection analysis for Tallulah and 
paired watersheds Chattooga and Hiwassee indicate a significant posi
tive trend change point detection at Tallulah in 2018. No significant 
change points were found at Chattooga for the period 2006–2023 or for 
Hiwassee for the period 2008–2023.

4. Discussion

The 2016 wildfire event in the Southern Appalachian Ecoregion was 
unprecedented in recent wildfire records for the Eastern United States, 
resulting in an estimated total burned area of over 60,000 ha (Reilly 
et al., 2022). This study found that half of SAE wildfire perimeters had 

Fig. 5. Burn severity categories based on modified RdNBR thresholds – Chimney Tops, Rock Mountain, Tellico and Camp Branch fire perimeters.
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only low or moderate burn severity areas, suggesting possible effective 
fire suppression methods and conditions potentially unsuitable for 
widespread, high severity fires. Within the larger wildfire perimeters, 
over half of high burn severity areas were located at higher elevations 
(above 500 m). The empirical relationship between plot-derived com
posite burn index (CBI) and burn severity derived from satellite imagery 
can present methodological challenges, especially over large areas with 
multiple fires. CBI assembles multiple variables, while RdNBR is derived 
from image time-series (Cardil et al., 2019). While burn severity clas
sification models have been tested and scaled at watershed scale in the 
Western US, this approach presents limitations in the case of Eastern US 
wildfires, due to the paucity of field observations in regions with smaller 
wildfire perimeters. This study leveraged field observations and 
watershed-level RdNBR classification thresholds (Caldwell et al., 2020) 
to classify a composite NBR index derived from a collection of images. 
Modified thresholds resulted in higher levels of agreement with high 
burn severity categories. While the field data distribution is constrained 
to a small part of SAE, this overlaps with the central area most impacted 
by the 2016 wildfires. Further field data collection in watersheds 
impacted by infrequent wildfires will be needed to improve burn 
severity classification and transferability to other regions.

Results from comparison of high burn severity categories based on 
RdNBR programmatic calculations using cloud computing and image 
collection stacks show high agreement with plot-estimated burn 
severity. Changes in the threshold values resulted in higher overall 
agreement with plot CBI, with the lowest agreement, 30 % for areas of 
low severity, primarily due to confusion between the moderate and low 

burn severity classes. This study’s novel approach linked infrequent 
forest wildfire disturbance to changes in catchment dynamics in SAE, a 
region where forest wildfires have been understudied.

4.1. Vegetation recovery after wildfires

This study found that five of the fire outbreaks resulted in significant 
decline in spectral reflectance after the fire, indicating growing season 
vegetation decline. A temporal decline in vegetation spectral reflectance 
was significant within fire perimeters burned at high and moderate burn 
severity, followed by rapid vegetation spectral reflectance increase, 
largely consistent with existing literature for wildfires and vegetation 
recovery (Wimberly, Reilly.,2007). However, initial vegetation spectral 
decline from pre-fire levels was only around 10 % from pre-fire levels 
even for fire perimeters with higher burn severity, which is less than 
other wildfire studies (Bright et al., 2019, Meng et al., 2018). In Tallulah 
watershed, estimated time to 95 % and 100 % recovery to annual 
pre-fire spectral NBR was 3–5 and 4–7 years, respectively.

The recovery was found to be shorter than in most other studies 
focused on Western U.S wildfires (Guz et al., 2022, Meng et al., 2018, 
Zhao et al., 2016). A reasonable explanation for this difference in re
covery time is related to the fact that biomass accumulation and 
post-disturbance forest recovery is influenced by climatic factors 
(Anderson et al., 2006) with slower recovery in arid forests and in 
colder, more humid forests as compared to Southern Appalachian 
forests.

Post-fire vegetation recovery can be challenging to quantify due to 
limitations in distinguishing between shrub and grass recovery from 
forest recovery, especially following intense forest wildfires. It was 
beyond the scope of this study to collect ground truthing data across the 
southern Appalachian wildfires to validate the remotely sensed recovery 
and to separate recovery according to vegetation type. The absence of 
ground data collection is a limitation of this study but could be allevi
ated using remotely sensed data and leveraging known differences be
tween forest and grass or shrub recovery. Given sufficient time, forest 
impacted by wildfire will eventually recover in several stages. There
fore, time since wildfire can be used to determine vegetation recovery 
and is a key factor in predicting post-fire vegetation recovery (Bartels 

Table 4 
Mann-Kendall test results for NBR and NDVI fitted values (2016–2023) in 2016 
burned perimeters –Chimney Tops, Tellico, Camp Branch, and Rock Mountain.

Wildfire NDVI fitted 
tau

NDVI 
pvalue

NBR fitted 
tau

NBR fitted 
pvalue

Chimney 
Tops

1 0.009 1 0.009

Tellico 0.867 0.024 0.867 0.024
Camp Branch 0.867 0.024 1 0.009
Rock 

Mountain
1 0.009 1 0.009

Fig. 6. NBR median and vegetation recovery in 2016 burned perimeters – Camp Branch, Chimney Tops, Rock Mountain, Tellico.

Fig. 7. NDVI median and vegetation recovery in 2016 burned perimeters –Camp Branch, Chimney Tops, Rock Mountain, Tellico.
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Fig. 8. Percent of annual fitted NBR values from pre-fire mean values in sampled pixels stratified by burn severity and elevation within four SAE wildfire perimeters.

Fig. 9. Post-fire NBR recovery in sampled pixels stratified by burn severity, elevation classes, and vegetation/forest group, Rock Mountain Wildfire (Tallu
lah Watershed).
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et al., 2016). NBR and other vegetation indices based on short-wave 
infrared (SWIR) and new infrared (NIR) wavelengths have proven 
good performance in characterizing fire severity and post-fire recovery, 
especially when pre-fire images are used to quantify changes as RdNBR 
(Hislop et al., 2018; Kennedy et al., 2010). However, vegetation re
covery based on observations of greenness through remote sensing may 
not indicate true forest recovery and the ecosystem processes associated 
with forest.

The growing volume of remotely sensed data also provides new 
opportunities for distinguishing forest recovery from other vegetation 
recovery. Combining data from multispectral instruments with datasets 
from different sensors, such as forest canopy height based on the Global 
Ecosystem Dynamics Investigation lidar instrument (Potapov et al., 
2021) enables vegetation structure.

4.2. Fire and vegetation recovery impacts on water yield

Post-fire water yield is generally expected to follow a hydrologic 
recovery pathway with a sequence of vegetation decline followed by 
increases in water yield, vegetation re-growth and subsequent return to 
pre-fire water yield. Water use by vegetation increases with vegetation 
regrowth, and in watersheds where annual water yield increased 
following fires, annual streamflow gradually decreases annually to reach 
pre-fire levels.

Forest wildfire could also indirectly impact ecosystem resilience and 
hydrology through lasting changes in vegetation composition and 
structure. Intense forest wildfires resulting in severe tree burning and 
high tree mortality could prompt a long-term shift in post-fire vegetation 
species composition from mesophytic (drought and fire intolerant) to 
xerophytic (drought and fire tolerant) species, resulting in lower 
evapotranspiration and potentially higher water yield (Caldwell et al., 
2020, 2016). For example, Caldwell et al. (2020) found there was 
significantly greater mortality of mesophytic (mean 48.9 % ± 4.2 %) 
than xerophytic (mean 28.6 % ± 3.8 %) trees of all sizes in the second 
year after the 2016 Camp Branch and Tellico Fires in the southern Ap
palachians. Caldwell et al. (2016) showed that shifts in species compo
sition from mostly xerophytic to mesophytic species in the region over 
the 20th century resulted in increases in evapotranspiration and de
creases in water yield. Thus the preferential mortality of mesophytic 
species in the 2016 wildfires could alter watershed water balances in a 

region that is critical to water supply (Caldwell et al., 2016). While there 
are differences in vegetation composition across and within the wildfire 
perimeters due to elevation, climate, and management, vegetation in 
SAE has generally shifted to species less adapted to fires (Caldwell, 2016; 
Elliott and Swank, 2008; Elliott and Vose, 2011).

Under increasing frequency and intensity of drought coupled with 
potential increases in wildfire frequency and severity, drought and 
wildfires could push forests in the region to a more xerophytic species 
composition, a condition that could increase forest resilience to these 
stressors in the long term (Vose and Elliott, 2016). However, the tran
sition to these forest types without management (e.g., selective removal 
of mesophytic species, thinning, prescribed fire) could result in decades 
of degraded, less vigorous, and poorer quality forest stands (Vose and 
Elliott, 2016).

Historical analysis of streamflow reveals detectable differences be
tween the similar Tallulah (burned), Chattooga and Hiwassee (paired, 
unburned) watersheds within a five-year window following the 2016 
wildfire event. Residual cumulative streamflow indicates an increase in 
post-fire annual Tallulah streamflow. Since annual cumulative rainfall 
was similar in the paired watersheds, the change in residuals can be 
considered as the possible effect of the 2016 Rock Mountain fire in 
Tallulah watershed.

A detected change point in annual streamflow at Tallulah occurred in 
2018, a year after a drop in NBR values within the Rock Mountain 
wildfire perimeter. In 2019 and 2020, increased annual streamflow 
exceeded expected values when compared with the paired watersheds 
Chattooga and Hiwassee at the highest levels for the period of record 
considered (1990–2023). NBR values returned to pre-fire values five to 
seven years following the wildfires, with timing for over 90 % NBR re
covery corresponding to 2021–2022 and lower differences in stream
flow between paired catchments.

Considering burn severity and vegetation recovery results, this 
study’s findings of changes in annual water yield within the burned 
Tallulah watershed are intriguing. Annual water yield was found to have 
increased significantly at Tallulah using several methods (paired 
watershed analysis, change point analysis) when compared with mul
tiple paired unburned watersheds, and remained consistently higher 
than expected six years following the 2016 wildfires. This appears to 
confirm that post-fire annual water yield generally increases following 
forest disturbance that impacts over 20 % of the watershed area, which 

Fig. 10. Estimated time to NBR recovery post-wildfire, based on pre-fire mean NBR values – a)Years to reach 99 % of pre-fire NBR values; b) Years to reach 95 % of 
pre-fire NBR values.
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is consistent with numerous studies (Hallema et al., 2018). However, in 
the literature specifically focused on changes in water yield following 
wildfires in the western US, increased water yield was only found in case 
studies of watersheds with fire perimeters over half or more of the 
drainage area (Moreno and Hernan, 2020; Kinoshita and Hogue, 2015).

Water yield response to wildfire has been shown to be related to the 
proportion of the watershed area burned (Hallema et al., 2018) as well 
as the proportion of the watershed area burned at high severity 
(Caldwell et al., 2020). Hallema et al. (2018) identified a threshold of 
watershed burn area of 19 % as the lower bound at which a hydrologic 
response may be reasonably detected (Hallema et al., 2018). The 
Talullah watershed was burned over 35 % of it’s area, with 13 % burned 
at high severity. Our results show that wildfire may have increased 
annual water yield in the Tallulah watershed by as much as 359 mm 
(29 %) and 295 mm (22 %) using the Chatooga and Hiawassee reference 
watersheds, respectively. These results are consistent with those of 
Caldwell et al. (2020), where a watershed in the SAE that had 65 % of 
it’s area burned at high severity had 422 mm (39 %) great annual water 
yield post-fire than a paired unburned watershed. By comparison, with 

the exception of coniferous-dominated Pacific Northwest watersheds, 
wildfires in the western US tend to result in larger relative changes but 
smaller absolute changes in water yield for a given proportion of 
watershed burned due to the generally drier climate and lower water 
yield (Hallema et al., 2018). For example, Blount et al. (2019) detected a 
136 mm (140 %) increase in water yield in a catchment in Montana that 
was 90 % burned. This eastern vs. western US water yield response is 
true of forest disturbances generally (e.g., harvests).

In addition to the magnitude of the response in water yield, the time 
to water yield recovery varies regionally. We showed that water yield in 
the burned Talullah watershed returned to pre-burn levels after 
approximately five years after the fire and three years after the initial 
significant increase in water yield. This time to recovery is consistent 
with forest harvesting studies in the region. For example, Swank et al. 
(2014) showed that a water yield in a complete watershed clear-cut at 
the Coweeta Hydrologic Laboratory returned to pre-harvest levels after 
five years. The recovery in the Talullah watershed was found to be 
shorter than in most other studies focused on Western U.S wildfires (Guz 
et al., 2022, Meng et al., 2018, Zhao et al., 2016). A reasonable expla
nation for this difference in recovery time is related to the fact that 
biomass accumulation and post-disturbance forest recovery is influ
enced by climatic factors (Anderson et al., 2006) with slower recovery in 
arid forests and in colder, more humid forests as compared to Southern 
Appalachian forests. Given the variability in the magnitude and time to 
recovery of water yield response to wildfire, our results may not be 
applicable to burned watersheds in other hydroclimatic settings.

In addition to the magnitude of the response in water yield, the time 
to water yield recovery varies regionally. We showed that water yield in 
the burned Talullah watershed returned to pre-burn levels after 
approximately five years after the fire and three years after the initial 
significant increase in water yield. This time to recovery is consistent 
with forest harvesting studies in the region. For example, Swank et al. 
(2014) showed that a water yield in a complete watershed clear-cut at 
the Coweeta Hydrologic Laboratory returned to pre-harvest levels after 
five years. The recovery in the Talullah watershed was found to be 
shorter than in most other studies focused on Western U.S wildfires (Guz 
et al., 2022, Meng et al., 2018, Zhao et al., 2016). A reasonable expla
nation for this difference in recovery time is related to the fact that 
biomass accumulation and post-disturbance forest recovery is influ
enced by climatic factors (Anderson et al., 2006) with slower recovery in 
arid forests and in colder, more humid forests as compared to Southern 
Appalachian forests. Given the variability in the magnitude and time to 
recovery of water yield response to wildfire, our results may not be 
applicable to burned watersheds in other hydroclimatic settings.

While 35 % of the Tallulah watershed was impacted by wildfire, only 
13 % of the Tallulah Rock Mountain fire perimeter was classified as high 
burn severity and yet up to a 25 % increase in water yield was detected. 
Caldwell et al. (2020) also detected increases in water yield from burned 
watersheds that had as low as 21 % of their drainage area burned at high 
severity. This suggests that studies focused on wildfires in the Western U. 
S. may not be easily extrapolated to the 2016 SAE fires, possibly due to 
climatic factors, differences in vegetation species and the infrequent 
occurrence of fires in the Eastern U.S. However, changes in water yield 
suggest a similar hydrologic recovery pathway with a sequence of 
vegetation decline followed by increases in water yield, vegetation 
re-growth and subsequent return to lower - although remaining 
consistently above pre-fire - water yield. This is most evident in the 
annual NBR trajectory as a percentage of pre-fire levels and the annual 
difference from expected streamflow at Tallulah (Fig. 12).

4.3. Implications for management

The fire regime in the SAE is projected to shift under increased 
drought conditions driven by climate change, resulting in more frequent 
fires and larger burned areas (Robbins et al., 2024). Given the potential 
for significant short and long-term water supply impacts following forest 

Fig. 11. Double mass analysis comparing cumulative annual water yield from 
the Tallulah (burned) watershed to the unburned Chattooga watershed (a) and 
the unburned Hiwassee watershed (b).
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disturbance and especially fires, managers need access to reliable 
methods, data and tools to interpret and anticipate the potential effects 
of fire-driven forest disturbance on watershed vegetation and hydrology. 
These effects have been historically under-studied in regions with low 
fire frequency.

This study presents novel results that provide managers with the 
ability to estimate burn severity through remote sensing across a large 
ecoregion, to determine the timeframe for post-fire vegetation recovery, 
and to detect and quantify the effect of wildfire on annual water yield 
and hydrologic recovery.

Managers can use this information to anticipate potential wildfire 
impacts and to plan for adaptive forest management and preventive 
interventions, including prescribed fires and management of forest fuel 
loads. Managers can also use new scientific information regarding the 
effects of infrequent fires to plan for post-fire forest management in
terventions aimed at increasing forest resilience and maintaining a 
reliable water supply. This improved knowledge is increasingly impor
tant for managers planning for rapidly shifting fire regimes and antici
pated increases in wildfire frequency associated with climate change.

4.4. Limitations and opportunities for future research

This study had some limitations that could impact transferability of 
results to other watersheds and regions. First, there was limited avail
ability of field observations of pre-fire and post-fire vegetation species to 
inform vegetation recovery trajectories derived from remotely sensed 
data in Tallulah watershed. Field observations could inform estimates of 
tree canopy recovery as compared to understory vegetation. Second, 
examination of fine-scale climate variables could provide additional 
context to the vegetation and hydrologic recovery results presented in 
this study. However, there are significant challenges in evaluating fine- 
spatial resolution climatic variables in this region, including 1) there is a 

limited network of climate stations available, 2) the mountainous terrain 
causes high spatial variability in climate variables even over short dis
tances limiting applicability of available climate stations, and 3) gridded 
climate data products that leverage observed climate variables to 
extrapolate across the region, such as Parameter-elevation Regressions 
on Independent Slopes Model (PRISM) and DAYMET gridded products 
often have difficulty in estimating climate variables due to their fine 
scale spatial variability (Behnke et al., 2016). Due to these limitations, 
we did not attempt to consider fine-scale climate data as potential 
explanatory variables in our assessment of vegetation and hydrologic 
recovery. Third, there were limitations related to modeling burn severity 
using remotely sensed data over large areas with frequent cloud 
coverage. This study employed cloud masking and image reducers to 
alleviate limitations related to frequent cloud cover in the SAE 
Ecoregion.

And lastly, there was limited availability of pre-fire and post-fire 
hydrologic records for other SAE watersheds impacted by the 2016 
wildfire. A limited number of reference watersheds are suitable for 
analyzing wildfire impacts, due to human disturbance and gaps in 
continuous daily streamflow data collection. Additionally, watersheds 
rarely overlap with wildfire burned areas, due to the smaller size of 
wildfire in the Eastern U.S. The study approach combined established 
methods to yield realistic and explainable results while alleviating these 
limitations.

The focus of this study was to improve understanding of infrequent 
wildfire impacts on vegetation and catchment dynamics in an under- 
studied region, with the goal to augment the data and tools available 
for managers, which enhances their ability to respond and plan to future 
fire events. Areas of future research could include combining vegetation 
indices at different spatial resolutions with field observations to address 
knowledge gaps in post-fire vegetation re-growth. Future studies in 
impacted watersheds with limited records or ungauged could inform 

Fig. 12. a) Annual percentage from mean pre-fire NBR fitted values within Tallulah watershed burned areas and b) Difference from expected in annual streamflow at 
Tallulah (based on paired watershed Chattooga).

Fig. 13. Difference from expected in annual streamflow at Tallulah (based on paired watershed Hiwassee).
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planning to concomitantly reduce the risk of fires while improving the 
effectiveness of post-fire forest management actions to maintain water 
supplies. Lastly, future modeling efforts could explore the contribution 
of climate variables to variations in vegetation response at fine spatial 
and temporal resolution.

5. Conclusions

This study revealed opportunities for efficient cloud-computing es
timates of high and moderate burn severity and vegetation recovery 
trends across multiple wildfire perimeters following the 2016 fire 
outbreak in the Southern Appalachian Ecoregion, and linked those 
trends to post-wildfire water yield in a burned forested watershed. This 
work is among the very few to make these connections between wildfire, 
vegetation disturbance, and recovery, and ecosystem processes in the 
eastern U.S.

Changes in annual streamflow in a burned watershed were detected 
following wildfire through paired comparison with multiple unburned 
watersheds, suggesting an increase and recovery in annual water yield 
that coincided with vegetation disturbance and subsequent recovery as 
detected through remote sensing. Despite limitations related to a small 
sample size of hydrologic response and linkages between remotely- 
sensed greenness and forest ecosystem recovery, this study advances 
our understanding of how infrequent fires can impact catchment vege
tation and hydrology in an understudied region. Future work can 
leverage these findings by examining additional watershed and col
lecting field data to evaluate vegetation recovery across broad regions of 
the eastern U.S. The improved understanding provided by this study 
augments the ability of managers to plan for an expected increase in the 
frequency of forest fires and to anticipate the impacts on forested 
mountain catchments and on water provision from these catchments.
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