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ABSTRACT

This study used dense time-series satellite imagery, field data and historical streamflow records in a paired
catchment approach to 1) estimate burn severity across a large ecoregion; 2) analyze vegetation recovery and 3)
evaluate the effects of forest disturbance on annual water yield. While wildfire is an important driver of annual
forest disturbance in Western United States, forest disturbance due to fire is infrequent in the Eastern United
States. Changes in wildfire frequency and intensity amid climate variability are anticipated to increasingly
impact forest ecosystems in regions with rare fire occurrence, and where fire effects on vegetation and watershed
hydrology are under-studied. This research knowledge gap could impact managers that need dependable data
and models to anticipate and plan for potential impacts on forested watersheds and water supply. Results from
analysis of satellite time series within burned areas indicate post-fire vegetation decline and recovery in the
largest wildfire perimeters. In a burned forested watershed, annual water yield was significantly impacted by
forest disturbance, with an increase of up to 25 % in the years immediately following wildfire. These results are
novel and significant for improving our understanding of infrequent wildfire impacts on vegetation recovery and

water supply.

1. Introduction

Forests provide essential ecosystem services, including flowing water
critical for the overall sustainability of a region and country (Valjarevic,
2024), reducing the impact of high intensity rainfall and erosion, impact
water quality downstream, and contributing to rainfall through evapo-
transpiration. As forests provide ecosystem services to expanding human
populations, there is growing concern about decreased forest resilience
amid disturbance compounded by climate change and variability.
Emerging evidence suggests climate change contributes to significant
disruption in forest ecosystems with the potential to alter forests beyond
their potential ecological resilience, especially for temperate, tropical
and arid forests (Seidl et al., 2017; Forzieri et al., 2022).

Drivers of forest disturbance can be related to natural (such as
wildfire, drought, storms, tree pathogens,insect defoliators) or anthro-
pogenic (such as harvesting, shifting agriculture) agents. The effects of
forest disturbance can depend on possible interactions between distur-
bance agents and the ability of forest ecosystems to survive and even
recover from disturbance over time (Forzieri et al., 2022). Among forest
disturbances, wildfire depends on interactions with climate, vegetation,
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terrain characteristics, and other factors, with the potential to cause
lasting changes in forest ecosystems and resilience. The characteristics
of vegetation are critical in determining fuel potential, with grassland
and shrubland vegetation displaying lower fuel potential compared to
forestland. Differences in tree age and species influence variability in
fire burning potential (Vujovi¢ et al., 2024). Remote sensing, which
includes satellite and aerial imagery, has a critical role in modern
wildfire detection and characterization over large areas (Carta et al.,
2023), with possible data gaps in regions with frequent cloud cover
(Chen et al., 2024). Remotely sensed data has been used extensively to
delineate fire perimeters and to characterize fire effects, especially to
derive important metrics such as burned area and burn severity (Meng
and Zhao, 2017).

Remotely sensed data has been used extensively to characterize fire
effects, especially to derive important metrics such as burned area and
burn severity (Meng and Zhao, 2017). Monitoring post-fire vegetation
recovery is critical to understanding conditions that promote post-fire
forest ecosystem resilience (Meng et al., 2015, Pérez-Cabello et al.,
2021). However, widely used vegetation indices derived from remotely
sensed data cannot easily distinguish between post-fire understory and
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canopy vegetation recovery. Several studies found a relationship be-
tween fire burn severity and post-fire vegetation recovery (Zhao et al.,
2016, Yang et al., 2017, Bright et al., 2019), with an initial variable
increase in forest recovery by tree species and burn severity, under-
scoring the importance of combining remotely sensed and field data to
understand the effects of fire severity on short and long-term tree mor-
tality (Meng et al., 2018).

Experimental studies that specifically consider vegetation recovery
in post-wildfire catchment hydrologic recovery remain rare, due to
practical challenges associated with designing an experiment with
concomitant large, prescribed fires attempting to reproduce wildfire
behavior and vegetation impacts. In addition, few of the catchments that
have been historically impacted by wildfires were instrumented at the
time of the wildfires, and therefore there is a limited sample of catch-
ments where retrospective analysis of wildfire impacts on streamflow is
feasible using existing methods and tools. Several studies, including a
synthesis of model-based approaches to predict water yield following
wildfire (Partington et al., 2022) found that although impacts vary
spatially and by ecoregion and hydrologic regime, incorporating burn
severity and vegetation recovery can significantly improve streamflow
prediction following wildfires. The findings strongly suggest the need for
additional data and tools to support research and improvements in un-
derstanding the role of vegetation recovery and forest ecosystem resil-
ience alongside post-wildfire catchment dynamics. This is particularly
challenging in the case of infrequent wildfires, due to the lack of existing
observations. Additionally, observed and predicted increased wildfire
frequency could cause hydrological non-stationarity. This could impact
the predictive power of existing models that rely on historical data re-
cords. This study’s focus on understanding the impact of infrequent
wildfires addresses this research gap and presents a rare opportunity to
examine wildfire effects on vegetation and hydrologic recovery in the
historically understudied Southern Appalachian Ecoregion.

Forest fires are infrequent in the Southern Appalachian/Blue Ridge
Mountains Ecoregion (SAE) and therefore historically have not been
considered a major driver of forest disturbance. The last period of SAE
recorded widespread fires was associated with grazing and intense
logging in the late 19th and early 20th century (Van Lear, 1989).
However, historical evidence suggests that frequent -possibly annual -
fires shaped forest development, population growth, and land use
change across the SAE long before the early 20th century logging op-
erations and subsequent fire exclusion (Lafon et al., 2017). The relative
dominance of fire-adapted tree species, such as oak (Quercus) and pine
(Pinus) and especially the presence of endemic fire-resistance pine spe-
cies such as the Table Mountain pine (P. pungens), is considered as evi-
dence supporting a higher frequency of forest fires (Lafon et al., 2017).
In late 20th century and early 21st century, SAE’s forest composition has
changed to favor mostly mesophytic (fire-intolerant) species, such as
maples, in a shift from mostly xerophytic (fire-adapted) species (Elliott
and Swank, 2008; Elliott and Vose, 2011). This shift in forest composi-
tion occurred in the context of fire exclusion and climate change, and
sometimes following outbreaks of tree diseases and insect defoliators,
such as the Chestnut blight and the Eastern hemlock. Following a
summer-long severe drought period, the 2016 SAE wildfire outbreak
was unprecedented in the amount of area burned and the number of
reported suppressed ignitions (Caldwell et al., 2020; Reilly et al., 2022;
Eidenshink et al., 2007). Occurring in the context of vegetation transi-
tion to mostly mesophytic species and increased variability, there is
limited evidence regarding post-fire vegetation recovery and catchment
dynamics in the SAE.

The purpose of this study was to enhance understanding of infre-
quent wildfire impacts on vegetation and catchment hydrological dy-
namics in the Southern Appalachian ecoregion. This study was focused
on addressing the research knowledge gap through adapting methods in
an under-studied region impacted by an infrequent wildfire event. This
study had three objectives:1) to derive burn severity estimates based on
dense remotely sensed image collections, informed by ground-based
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measurements for the entire SAE; 2) to characterize post-fire vegeta-
tion recovery in wildfire-impacted areas; and 3) to evaluate possible
post-fire hydrologic impacts in a watershed impacted by wildfire. The
study represents a novel contribution to forest management through
improved understanding of infrequent wildfire impacts on catchment
dynamics. The study methods and findings enable managers to mitigate
potential wildfire impacts in forested catchments, based on the ability to
foresee and plan anticipatory catchment interventions.

2. Methods
2.1. Study area

The forests of Southern Appalachian/Blue Ridge Mountains Ecor-
egion (SAE) located in Southeastern U.S (Fig. 1) record some of the
highest levels of biodiversity in North America (Anderson et al., 2013;
Whittaker, 1956). The region covers a total area of 41,000 square ki-
lometers, with a length of more than 1100 kilometers including diverse
mountain ecosystems across the states of Virginia, North Carolina, South
Carolina, Tennessee, and Georgia (Fig. 1). SAE’s uniquely diverse forest
ecosystems are characterized by a mix of coniferous trees, including a
mix of pine (Pinus echinata) and deciduous oak forests at low elevations
and a mix of mountain oak forests at moderate elevations (Arthur et al.,
2021). At the highest elevations, spruce, fir, and northern hardwood are
the most dominant tree species (Whittaker, 1956). The ecoregion
experienced a decrease in total coniferous forest area in recent years,
partly due to insect defoliators (Simon, 2005). The hemlock wooly
adelgid infestation resulted in high tree mortality for Eastern hemlock
(Tsuga canadensis) (Reilly et al., 2022). Since the mid to late 1970s,
mountain forests in the Southern Appalachian region have undergone a
shift from mostly xerophytic to mostly mesophytic tree species, which
could decrease total water yield within a watershed (Caldwell et al.,
2016).

2.2. Data and approach

This study used daily streamflow data for historical streamflow
analysis and satellite image collections for pre and post wildfire vege-
tation condition analysis within watersheds impacted by the 2016
wildfires (Fig. 2, Methods).

2.3. Wildfire burn severity

Across the Southern Appalachian Ecoregion, 21 wildfire perimeters
with areas ranging between 219 and 11,194 hectareas, with a total area
of 55,532 ha from the publicly available Monitoring Trends in Burn
Severity (MTBS) 2016 perimeters were used to filter image time series
using the cloud computing platform Google Earth Engine (Gorelick
et al., 2017). The Harmonized Landsat Sentinel-2 (HLS) (Masek et al.,
2021) surface reflectance and the Copernicus Harmonized Sentinel
Level-1C orthorectified top-of atmosphere collection (European Space
Agency, 2024; Gorelick et al., 2017) were accessed in Earth Engine over
the entire Southern Appalachian Ecoregion for the growing season prior
and following the 2016 wildfires (May-July 2016; May-July 2017). The
Sentinel-2 Multi-Spectral Instrument (MSI) includes visible, near
infrared and short-wave infrared bands. Frequent cloud cover in the
Southern Appalachian Ecoregion may reduce the reliability of satellite
data, thus Sentinel scenes at 30 m resolution were filtered by date and
masked for < 20 % cloud presence in Google Earth Engine. The filtered
image collection was reduced to a composite pixel value in each band
representing the median value across all images in each pixel. The
composite median reducer method mitigates quality issues related to
residual cloud and shadow presence (Zhang et al., 2021). Advances in
remote sensing enabled rapid wildfire detection from multiple plat-
forms, including Landsat, Sentinel, NASA MODIS and Aqua. Future de-
velopments and multi-sensor data (SAR, LIDAR, optical, hyperspectral,
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Fig. 1. Southern Appalachian Ecoregion and 2016 wildfire perimeters (red).

optical) fusion offer the potential to detect and characterize wildfires
with greater accuracy (Yang et al., 2024).

The Normalized Burn Ratio (NBR) is the most common metric used
to identify wildfire impacts and combines near infrared (NIR) and short-
wave infrared (SWIR) reflectance (Eq. 1). Due to post-fire changes in NIR
and SWIR reflectance, NBR is commonly used to identify fire signals in
multispectral imagery and to estimate wildfire effects on vegetation. To
identify the possible effects of wildfire on vegetation, post-fire NBR is
subtracted from pre-fire NBR to calculate the differenced NBR (Key and
Nathan, 2006) for a pair of images over the area of interest. A modified
ratio, the relative ANBR (RNBR, Eq. 2) was introduced to improve fire
signal detection (Miller and Thode, 2007). The workflow for RANBR
calculation is presented in Fig. 3.

(NIR — SWIR)

NBR="————+= 1
(NIR + SWIR) )
NIR, SWIR are near and shortwave infrared bands
RANBR — (NBRprefire — NBRpostfire) )

v/ (|NBRprefire|)

RANBR calculated programmatically in Google Earth Engine was
compared with plot-derived Composite Burn Index (CBI) based on var-
iables measured following the 2016 wildfires at select field plots in
Camp Branch and Tellico wildfires (Caldwell et al., 2020). The rela-
tionship between mean RANBR derived from image collections and plot
variables including tree mortality, basal area and char height was tested
using Spearman’s rank correlation coefficient. Watershed-level RANBR
was classified in burn severity categories using watershed-level RANBR
ranges (Caldwell et al., 2020). Low and moderate burn severity

categories were aggregated into one category, resulting in three burn
severity categories: high, moderate, and low burn severity. Burn severity
patches were further aggregated in contiguous patches with a minimum
area of 5ha. The level of agreement between plot-estimated burn
severity and ecoregion mean RANBR was evaluated with an accuracy
matrix using a 10-meter buffer around plot locations.

Burn severity categories for the Southern Appalachian Ecoregion
were combined with three elevation classes derived from the U.S
Geological Survey 3D elevation program (USGS, 2020) at 1 m resolu-
tion: high elevation (>1000 m), medium elevation (500-1000 m), and
low elevation (<500 m).

2.4. Post-fire vegetation recovery

Post-fire vegetation recovery varies with pre-fire vegetation type,
burn severity, topography and post-fire climate conditions (Meng et al.,
2018, Zhao et al., 2016, Bright et al., 2019). Quantifying vegetation
recovery can be challenging, due to a gap in metrics and methods that
can be adapted to track vegetation recovery at high temporal resolution
post-fire. However, recent advances in cloud computing and the growing
availability of dense time series of medium and high-resolution multi-
spectral imagery provide new opportunities for estimating recovery
(Bright and all, 2019).

Two of the most popular indices used in estimating fire effects and
vegetation change are the NBR and the Normalized Vegetation Index
(NDVI, Eq. 3). NDVI is widely used in analysis of multispectral imagery.

NDVI = — "~
Vi NIR + RED 3
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Fig. 2. Analytic methods overview.

A temporal segmentation algorithm, the Landsat-based detection of
Trends in Disturbance and Recovery (Landtrendr) allows for fine-tuning
of parameters to detect short and long-term changes in vegetation in-
dexes over a Landsat time series and is well suited for detection of
vegetation changes at fine time scales (Kennedy et al., 2010). The
computationally intensive Landtrendr algorithm involves the creation of
spectral trajectories across dense image series. A recent revision and
implementation of Landtrendr in the cloud computing platform Google
Earth Engine significantly reduces processing time and costs to identify
breakpoints and spectral trajectories associated with forest disturbance
over time (Kennedy et al., 2018).

The Landtrendr algorithm in Google Earth Engine was used to
develop annual NBR and NDVI mean values and fitted values for all
2016 wildfire perimeters. Fire patches corresponding to high and
moderate burn severity from four wildfire perimeters with the highest
burn severity were stratified by elevation classes (<500 m, 500-1000 m,
>1000 m). Landtrendr fitted trajectories were calculated based on a
spatial sample in stratified patches. NBR annual percentage from
average pre-fire NBR values was used to estimate vegetation recovery.
The NBR percentage for each year was calculated as the fitted annual
value divided by the pre-fire mean NBR levels.

NBR and NDVI time series over select patches in four wildfire pe-
rimeters with the highest burn severity were tested for significance of
trends using Mann-Kendall or Kendall’s tau test (Mann, 1945; Kendall,
1948). Mann-Kendall is used to test the null hypothesis that the data is
independent and identically distributed in a time series. If the test results
are significant, the null hypothesis is rejected and an increasing or
decreasing monotonic trend is determined.

2.5. Historical streamflow analysis

Although the paired watershed approach historically led to critical
hydrologic findings (Burt and McDonnell, 2015), this method requires a

similarly long historical record of daily, quality-approved USGS refer-
ence watershed (Lins, 2012) streamflow records across selected
watersheds.

The watersheds most impacted by 2016 wildfires across the region
are the headwaters of the Nantahala River and watersheds drained by
Tallulah River, West Pigeon River, Lower Cartoogechaye, Tellico,
Shooting Creek, and Betty Creek. However, fire perimeters rarely
overlap with gauged watersheds, making analysis of fire effects on the
streamflow regime extremely challenging. Across our study area, we
found one gauged watershed with a continuous record of daily stream-
flow pre-fire and post-fire that had more than 20 % of area within a
burned perimeter. The 152.3 km? Tallulah watershed above the USGS
station 02178400 near Clayton, GA was selected for historical stream-
flow analysis based on 35 % of its area within the Rock Mountain fire
perimeter and the availability of historical data records. USGS historical
daily streamflow data was accessed in R using the USGS data retrieval
package (De Cicco et al., 2024) and the fasstr package (Goetz, Schwarz.,
2023).

2.6. Paired watershed analysis

Two empirical methods were used to examine possible hydrologic
impacts following the 2016 wildfire in Tallulah River catchment. For
both methods, the unburned watersheds Chattooga above the USGS
station 02177000 and Hiwassee above the USGS station 03544970 were
selected as reference watersheds in a paired watershed approach
(Table 1, Fig. 4). The Rock Mountain fire perimeter overlaps with 35 %
of Tallulah watershed’s area (Fig. 4).

All three watersheds are considered reference watersheds and thus
have minimal anthropogenic flow alteration (Falcone, 2011).

Daily streamflow records from the pre-fire (2006-2016, Chattooga;
2008-2016, Hiawassee) and post-fire (2016-2023) were used for the
paired watershed analysis.
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Fig. 3. RANBR workflow.
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Table 1
Watershed characteristics.
Watershed
Characteristics Tallulah Chattooga Hiwassee
(burned) (unburned) (unburned)
Total area (ha) 15,125 53,613 10,230
Mean elevation (m) 885 759 868
Mean slope (%) 22 18 21
Aspect S S NwW
Oak/Hickory Forest 95 75 99
Group (%)
Mean water yield (Q, 1002 947 1000
mm/year)

The first method, double-mass paired watershed analysis (Searcy
andClayton, 1960; Biederman et al., 2015) is a visual method that
compares the slope of cumulative flow in the burned watershed against
the expected flow based on the relationship between streamflow in the
two-watershed pre-fire. The difference between observed cumulative
streamflow and the expected streamflow as annual residuals represents
the streamflow effect of wildfire.

The second method involves developing a linear regression between
the treatment (i.e., burned) and reference (i.e., unburned) watershed
annual water yield (mm/year) prior to the treatment (fire), and using
that relationship to estimate the expected annual water yield post-
treatment in the treatment watershed had the treatment (fire) not
occurred. Prediction intervals are then computed for each year at
a= 0.05. Numerous examples can be found in the literature that use this
method to evaluate the effect of forest disturbance, such as harvest
treatment or other disturbance on annual water yield (Ford et al., 2011,
Swank et al., 2014, Srivastava et al., 2020).

2.7. Analysis of streamflow trends

Historical streamflow records at USGS Tallulah station near Clayton
were analyzed to develop a complete flow history and metrics to
examine trends in daily recorded streamflow. Trends in over 50
streamflow metrics were tested for significance using the Mann-Kendall
non-parametric test of significance for the period prior and following the
2016 wildfires. A Bayesian ensemble model for detection of change
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points in time series data (RBeast, Zhao et al., 2019) was used to analyze
annual streamflow at Tallulah, Hiwassee, and Chattooga stations.

3. Results
3.1. Burn severity

The RANBR model derived programmatically from time series of
Sentinel imagery in Google Earth Engine was used to evaluate burn
severity across the entire ecoregion.

Mean RANBR was positively correlated with plot-measured tree
mortality (rs=0.76) and basal area loss (rs=0.73). Threshold values for
watershed-level RANBR range (Caldwell et al., 2020) were used to
classify burn severity, and the resulting moderate and low moderate
classes were aggregated into a low burn severity class.

Modified threshold values were derived based on the distribution of
RANBR values at 60 plot locations, with values in the 25th percentile
corresponding to the low severity class and values in the 75th percentile
corresponding to the high severity class (Table 2).

Field-determined categorical burn severity at sampled plot locations
in Tellico and Camp Branch fire perimeters was compared with burn
severity derived from Sentinel-based RANBR values. Categorical burn
severity was compared using a 10-meter buffer around the plot loca-
tions. For watershed-level thresholds (Caldwell et al., 2020), agreement
with aggregated plot burn severity categories was 80 % for low severity,
30 % for moderate severity, and 77 % for high burn severity categories.

Table 2
Burn severity RANBR thresholds.

RANBR range (% agreement with
plot categorical severity based on
confusion matrix)

Burn Severity High Moderate Low
Categories
Thresholds based on > 542 62-541 (30 %) <62
Caldwell et al. (77 %) (80 %)
(2020)
Modified thresholds > 492 201-491 (66 %) < 200
(71 %) (36 %)

TS [ UItoR

Mountains

Chunky
Gal
Mountain

©  USGS Station

Watershed

Widlfire perimeter

Fig. 4. Map of Tallulah, Hiwassee, and Chattooga watersheds.
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Table 3
Mann-Kendall test results for NBR and NDVI fitted values (2000-2016) in 2016
burned perimeters ~Chimney Tops, Tellico, Camp Branch, and Rock Mountain.

Wildfire NDVI fitted NDVI NBR fitted NBR fitted
tau pvalue tau pvalue
Chimney —-0.05 0.822 —0.667 0
Tops
Tellico 0.7 0 0.067 0.753
Camp Branch 1 < 0.0001 —0.517 0.006
Rock 0.667 0 —0.783 < 0.0001
Mountain

For modified threshold values, agreement with aggregated plot burn
severity categories was 36 % for low severity, 66 % for moderate
severity, and 71 % for high burn severity. Over 55 % of high burn
severity areas were located at higher elevations, and 40 % at medium
elevation.

A summary of the confusion matrix level of agreement for watershed-
level thresholds and the modified RANBR thresholds is presented in
Table 2.

Burn severity was subsequently scaled up to the entire ecoregion
using modified RANBR thresholds for the three burn severity categories.
Rock Mountain (18 %), Tellico (9 %), Camp Branch (29 %), and Chim-
ney Tops (35 %) wildfire perimeters (Fig. 5) had the largest proportion
of high burn severity areas within SAE fire perimeters overall. These
perimeters are in a central SAE section (Fig. 5). Across all SAE fire pe-
rimeters, 13 % of the area was burned at high severity, 30 % at moderate
severity, and 55 % at low severity.

3.2. Post-fire vegetation recovery

Over a 23 years period, annual NBR shifted from significantly
increasing during the pre-fire period to significantly decreasing post-fire
in the Chimney Tops, Camp Branch, and Rock Mountain wildfire pe-
rimeters (Table 3 and 4). Although indicative of vegetation recovery,
significant increasing post-fire monotonic NBR trends do not differen-
tiate between forest and other vegetation recovery, such as grass or
shrubs.

Time-series analysis of vegetation indices indicate a decline in
growing season vegetation growth one-two years post fire, followed by
vegetation recovery to 95 % of the pre-fire levels at the two- and three-
years mark. The NBR trajectories show a clear decline following the
2016 wildfires for all major wildfire perimeters, with the largest
magnitude in NBR decrease at Chimney Tops (Fig. 6). NDVI response is
more muted, with only Chimney Tops showing a change in NDVI tra-
jectory following the wildfires (Fig. 7). This is consistent with numerous
studies indicating that NDVI is less sensitive to post-fire vegetation
changes when compared to NBR (Bright et al., 2019, Pickell et al., 2016,
Hislop et al., 2018).

Vegetation recovery is more nuanced when wildfire perimeters are
classified by elevation classes and burn severity. Trajectories of esti-
mated percentage of NBR recovery in stratified samples within four
wildfire perimeters suggest relatively rapid recovery across all cate-
gories and elevation classes (Fig. 8). Camp Branch, Chimney Tops, and
Rock Mountain had the highest decline in post-fire vegetation growth.
Recovery in areas of high burn severity at elevation classes > 1000 m
and 500-1000 m was slower than for areas of moderate burn severity,
with an estimated 20 % of the area pre-fire still unrecovered seven years
following the wildfires.

Since the highest variability in dominant forest type/group was in
the Rock Mountain wildfire perimeter, a second set of fire perimeter
patches for Rock Mountain were stratified by burn severity, dominant
forest type, and elevation class. In Tallulah watershed, a drop in pre-fire
NBR is evident in 2017 immediately following wildfires, with the
highest decrease in areas of high burn severity located at 500-1000 m.
NBR recovery post 2017 was detectable in all burned areas in Tallulah/

Forest Ecology and Management 595 (2025) 122996

Rock Mountain wildfire perimeter, with differences in the rate of re-
covery between classes of different burn severity, elevation, and vege-
tation/forest group (Fig. 9). The pine forest group within high burn
severity areas had the most consistent upward trend following the first
year after wildfire. Post-fire NBR recovery within the dominant Oak/
Hickory Forest group (Table 1) was similar for medium burn severity
areas regardless of elevation, while stagnating until 2019 in areas of
high burn severity. All burned areas showed similar recovery trends at
five years following the wildfires. Five years post-fire, the NBR differ-
ence from pre-fire NBR indicator of vegetation growth was less than 5 %
in all burned areas (Fig. 9).

NBR indicative of vegetation growth returned to 95 % of pre-fire
levels in all burned areas within five years and returned fully to pre-
fire levels by year seven (Fig. 10).

3.3. Tallulah River historical streamflow analysis

The gauged Tallulah watershed provided an opportunity to examine
potential impacts of the Rock Mountain fire on water yield and subse-
quent recovery. Approximately 35 % of the gauged watershed was
within the Rock Mountain fire perimeter, and approximately 13 % of the
watershed area was burned at high severity (Figs. 4 and 9). Paired
catchment analysis comparing the burned Tallulah and unburned
Chattooga and Hiwassee watersheds revealed a departure from expected
cumulative annual streamflow following the 2016 wildfire event
(Fig. 11, double mass analysis). The null hypothesis tested states that the
slopes are equal between regression lines for the expected and the
observed streamflow in the years following the wildfire event. Based on
analysis of covariance (Biederman et al., 2015), the null hypothesis was
rejected, and the slopes are significantly different.

The fit between the annual water yield of the burned Tallulah
watershed and the unburned Chattooga watershed in the pre-fire period
(2006-2016) was determined using linear regression (equation 4,
R2=0.92). Using this relationship and the annual water yield of the
unburned Chattooga watershed, we estimated the expected annual
water yield of the burned Tallulah watershed had the fire not occurred.
The difference between the observed and expected water yield of the
burned Tallulah watershed post-fire was then calculated (Fig. 12). These
results show that a significant increase in annual water yield was
observed in the burned Tallulah watershed in 2019, 2020, and 2021,
after which the difference between observed and expected was not sig-
nificant. The increase in annual water yield after the fire peaked in 2020
at + 378 mm, or 25 % greater than expected. Recovery of annual water
yield occurred by 2022, approximately six years after the fire and three
years after the initial significant increase in water yield.

QTallulah = 0.7 x QChattooga + 287.2 (equation 4) QTallulah is
annual water yield for the burned watershed Tallulah and QChattooga is
the annual water yield for the unburned Chattooga watershed

Similarly, the fit between the annual water yield of the burned Tal-
lulah watershed and the unburned Hiwassee watershed in the pre-fire
period (2006-2016) was determined using linear regression (equation
5, R2:0.97). Using this relationship and the annual water yield of the
unburned Hiwassee watershed, we found a significant increase in annual
water yield in the burned Tallulah watershed in 2018, 2019, and 2020
when compared with Hiwassee watershed. After 2020, the difference
between observed and expected was not significant (Fig. 13). The annual
increase in water yield after the fire peaked in 2020 at + 295 mm, or
22 % greater than expected. Recovery of annual water yield occurred by
2021, approximately five years after the fire and three years after the
initial significant increase in water yield. The annual increase in water
yield after the fire peaked in 2020 at + 295 mm, or 22 % greater than
expected. Recovery of annual water yield occurred by 2021, approxi-
mately five years after the fire and three years after the initial significant
increase in water yield (Fig. 13).

QTallulah = 0.7 * QHiwassee + 287.2 (equation 5) QHiwassee is the
annual water yield for the unburned watershed Hiwassee
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Fig. 5. Burn severity categories based on modified RANBR thresholds — Chimney Tops, Rock Mountain, Tellico and Camp Branch fire perimeters.

Results from a change point detection analysis for Tallulah and 4. Discussion
paired watersheds Chattooga and Hiwassee indicate a significant posi-

tive trend change point detection at Tallulah in 2018. No significant The 2016 wildfire event in the Southern Appalachian Ecoregion was
change points were found at Chattooga for the period 2006-2023 or for unprecedented in recent wildfire records for the Eastern United States,
Hiwassee for the period 2008-2023. resulting in an estimated total burned area of over 60,000 ha (Reilly

et al., 2022). This study found that half of SAE wildfire perimeters had
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Table 4
Mann-Kendall test results for NBR and NDVI fitted values (2016-2023) in 2016
burned perimeters ~Chimney Tops, Tellico, Camp Branch, and Rock Mountain.

Wildfire NDVI fitted NDVI NBR fitted NBR fitted
tau pvalue tau pvalue

Chimney 1 0.009 1 0.009
Tops

Tellico 0.867 0.024 0.867 0.024

Camp Branch 0.867 0.024 1 0.009

Rock 1 0.009 1 0.009
Mountain

only low or moderate burn severity areas, suggesting possible effective
fire suppression methods and conditions potentially unsuitable for
widespread, high severity fires. Within the larger wildfire perimeters,
over half of high burn severity areas were located at higher elevations
(above 500 m). The empirical relationship between plot-derived com-
posite burn index (CBI) and burn severity derived from satellite imagery
can present methodological challenges, especially over large areas with
multiple fires. CBI assembles multiple variables, while RANBR is derived
from image time-series (Cardil et al., 2019). While burn severity clas-
sification models have been tested and scaled at watershed scale in the
Western US, this approach presents limitations in the case of Eastern US
wildfires, due to the paucity of field observations in regions with smaller
wildfire perimeters. This study leveraged field observations and
watershed-level RANBR classification thresholds (Caldwell et al., 2020)
to classify a composite NBR index derived from a collection of images.
Modified thresholds resulted in higher levels of agreement with high
burn severity categories. While the field data distribution is constrained
to a small part of SAE, this overlaps with the central area most impacted
by the 2016 wildfires. Further field data collection in watersheds
impacted by infrequent wildfires will be needed to improve burn
severity classification and transferability to other regions.

Results from comparison of high burn severity categories based on
RANBR programmatic calculations using cloud computing and image
collection stacks show high agreement with plot-estimated burn
severity. Changes in the threshold values resulted in higher overall
agreement with plot CBI, with the lowest agreement, 30 % for areas of
low severity, primarily due to confusion between the moderate and low

Rock Mountain
—e— Chimney Tops
—Tellico

-— Camp Branch

Percentage from mean pre-fire NBR

2014 2015

2016

Forest Ecology and Management 595 (2025) 122996

burn severity classes. This study’s novel approach linked infrequent
forest wildfire disturbance to changes in catchment dynamics in SAE, a
region where forest wildfires have been understudied.

4.1. Vegetation recovery after wildfires

This study found that five of the fire outbreaks resulted in significant
decline in spectral reflectance after the fire, indicating growing season
vegetation decline. A temporal decline in vegetation spectral reflectance
was significant within fire perimeters burned at high and moderate burn
severity, followed by rapid vegetation spectral reflectance increase,
largely consistent with existing literature for wildfires and vegetation
recovery (Wimberly, Reilly.,2007). However, initial vegetation spectral
decline from pre-fire levels was only around 10 % from pre-fire levels
even for fire perimeters with higher burn severity, which is less than
other wildfire studies (Bright et al., 2019, Meng et al., 2018). In Tallulah
watershed, estimated time to 95 % and 100 % recovery to annual
pre-fire spectral NBR was 3-5 and 4-7 years, respectively.

The recovery was found to be shorter than in most other studies
focused on Western U.S wildfires (Guz et al., 2022, Meng et al., 2018,
Zhao et al., 2016). A reasonable explanation for this difference in re-
covery time is related to the fact that biomass accumulation and
post-disturbance forest recovery is influenced by climatic factors
(Anderson et al., 2006) with slower recovery in arid forests and in
colder, more humid forests as compared to Southern Appalachian
forests.

Post-fire vegetation recovery can be challenging to quantify due to
limitations in distinguishing between shrub and grass recovery from
forest recovery, especially following intense forest wildfires. It was
beyond the scope of this study to collect ground truthing data across the
southern Appalachian wildfires to validate the remotely sensed recovery
and to separate recovery according to vegetation type. The absence of
ground data collection is a limitation of this study but could be allevi-
ated using remotely sensed data and leveraging known differences be-
tween forest and grass or shrub recovery. Given sufficient time, forest
impacted by wildfire will eventually recover in several stages. There-
fore, time since wildfire can be used to determine vegetation recovery
and is a key factor in predicting post-fire vegetation recovery (Bartels

Fig. 6. NBR median and vegetation recovery in 2016 burned perimeters — Camp Branch, Chimney Tops, Rock Mountain, Tellico.

Rock Mountain
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—e—Tellico

—e—Camp Branch

Percentage from mean pre-fire NDVI

2015

g —

2020 202 2022 2023

Fig. 7. NDVI median and vegetation recovery in 2016 burned perimeters -Camp Branch, Chimney Tops, Rock Mountain, Tellico.
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et al., 2016). NBR and other vegetation indices based on short-wave
infrared (SWIR) and new infrared (NIR) wavelengths have proven
good performance in characterizing fire severity and post-fire recovery,
especially when pre-fire images are used to quantify changes as RANBR
(Hislop et al., 2018; Kennedy et al., 2010). However, vegetation re-
covery based on observations of greenness through remote sensing may
not indicate true forest recovery and the ecosystem processes associated
with forest.

The growing volume of remotely sensed data also provides new
opportunities for distinguishing forest recovery from other vegetation
recovery. Combining data from multispectral instruments with datasets
from different sensors, such as forest canopy height based on the Global
Ecosystem Dynamics Investigation lidar instrument (Potapov et al.,
2021) enables vegetation structure.

4.2. Fire and vegetation recovery impacts on water yield

Post-fire water yield is generally expected to follow a hydrologic
recovery pathway with a sequence of vegetation decline followed by
increases in water yield, vegetation re-growth and subsequent return to
pre-fire water yield. Water use by vegetation increases with vegetation
regrowth, and in watersheds where annual water yield increased
following fires, annual streamflow gradually decreases annually to reach
pre-fire levels.

Forest wildfire could also indirectly impact ecosystem resilience and
hydrology through lasting changes in vegetation composition and
structure. Intense forest wildfires resulting in severe tree burning and
high tree mortality could prompt a long-term shift in post-fire vegetation
species composition from mesophytic (drought and fire intolerant) to
xerophytic (drought and fire tolerant) species, resulting in lower
evapotranspiration and potentially higher water yield (Caldwell et al.,
2020, 2016). For example, Caldwell et al. (2020) found there was
significantly greater mortality of mesophytic (mean 48.9 % + 4.2 %)
than xerophytic (mean 28.6 % =+ 3.8 %) trees of all sizes in the second
year after the 2016 Camp Branch and Tellico Fires in the southern Ap-
palachians. Caldwell et al. (2016) showed that shifts in species compo-
sition from mostly xerophytic to mesophytic species in the region over
the 20th century resulted in increases in evapotranspiration and de-
creases in water yield. Thus the preferential mortality of mesophytic
species in the 2016 wildfires could alter watershed water balances in a
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region that is critical to water supply (Caldwell et al., 2016). While there
are differences in vegetation composition across and within the wildfire
perimeters due to elevation, climate, and management, vegetation in
SAE has generally shifted to species less adapted to fires (Caldwell, 2016;
Elliott and Swank, 2008; Elliott and Vose, 2011).

Under increasing frequency and intensity of drought coupled with
potential increases in wildfire frequency and severity, drought and
wildfires could push forests in the region to a more xerophytic species
composition, a condition that could increase forest resilience to these
stressors in the long term (Vose and Elliott, 2016). However, the tran-
sition to these forest types without management (e.g., selective removal
of mesophytic species, thinning, prescribed fire) could result in decades
of degraded, less vigorous, and poorer quality forest stands (Vose and
Elliott, 2016).

Historical analysis of streamflow reveals detectable differences be-
tween the similar Tallulah (burned), Chattooga and Hiwassee (paired,
unburned) watersheds within a five-year window following the 2016
wildfire event. Residual cumulative streamflow indicates an increase in
post-fire annual Tallulah streamflow. Since annual cumulative rainfall
was similar in the paired watersheds, the change in residuals can be
considered as the possible effect of the 2016 Rock Mountain fire in
Tallulah watershed.

A detected change point in annual streamflow at Tallulah occurred in
2018, a year after a drop in NBR values within the Rock Mountain
wildfire perimeter. In 2019 and 2020, increased annual streamflow
exceeded expected values when compared with the paired watersheds
Chattooga and Hiwassee at the highest levels for the period of record
considered (1990-2023). NBR values returned to pre-fire values five to
seven years following the wildfires, with timing for over 90 % NBR re-
covery corresponding to 2021-2022 and lower differences in stream-
flow between paired catchments.

Considering burn severity and vegetation recovery results, this
study’s findings of changes in annual water yield within the burned
Tallulah watershed are intriguing. Annual water yield was found to have
increased significantly at Tallulah using several methods (paired
watershed analysis, change point analysis) when compared with mul-
tiple paired unburned watersheds, and remained consistently higher
than expected six years following the 2016 wildfires. This appears to
confirm that post-fire annual water yield generally increases following
forest disturbance that impacts over 20 % of the watershed area, which
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Fig. 11. Double mass analysis comparing cumulative annual water yield from
the Tallulah (burned) watershed to the unburned Chattooga watershed (a) and
the unburned Hiwassee watershed (b).

is consistent with numerous studies (Hallema et al., 2018). However, in
the literature specifically focused on changes in water yield following
wildfires in the western US, increased water yield was only found in case
studies of watersheds with fire perimeters over half or more of the
drainage area (Moreno and Hernan, 2020; Kinoshita and Hogue, 2015).

Water yield response to wildfire has been shown to be related to the
proportion of the watershed area burned (Hallema et al., 2018) as well
as the proportion of the watershed area burned at high severity
(Caldwell et al., 2020). Hallema et al. (2018) identified a threshold of
watershed burn area of 19 % as the lower bound at which a hydrologic
response may be reasonably detected (Hallema et al., 2018). The
Talullah watershed was burned over 35 % of it’s area, with 13 % burned
at high severity. Our results show that wildfire may have increased
annual water yield in the Tallulah watershed by as much as 359 mm
(29 %) and 295 mm (22 %) using the Chatooga and Hiawassee reference
watersheds, respectively. These results are consistent with those of
Caldwell et al. (2020), where a watershed in the SAE that had 65 % of
it’s area burned at high severity had 422 mm (39 %) great annual water
yield post-fire than a paired unburned watershed. By comparison, with
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the exception of coniferous-dominated Pacific Northwest watersheds,
wildfires in the western US tend to result in larger relative changes but
smaller absolute changes in water yield for a given proportion of
watershed burned due to the generally drier climate and lower water
yield (Hallema et al., 2018). For example, Blount et al. (2019) detected a
136 mm (140 %) increase in water yield in a catchment in Montana that
was 90 % burned. This eastern vs. western US water yield response is
true of forest disturbances generally (e.g., harvests).

In addition to the magnitude of the response in water yield, the time
to water yield recovery varies regionally. We showed that water yield in
the burned Talullah watershed returned to pre-burn levels after
approximately five years after the fire and three years after the initial
significant increase in water yield. This time to recovery is consistent
with forest harvesting studies in the region. For example, Swank et al.
(2014) showed that a water yield in a complete watershed clear-cut at
the Coweeta Hydrologic Laboratory returned to pre-harvest levels after
five years. The recovery in the Talullah watershed was found to be
shorter than in most other studies focused on Western U.S wildfires (Guz
et al., 2022, Meng et al., 2018, Zhao et al., 2016). A reasonable expla-
nation for this difference in recovery time is related to the fact that
biomass accumulation and post-disturbance forest recovery is influ-
enced by climatic factors (Anderson et al., 2006) with slower recovery in
arid forests and in colder, more humid forests as compared to Southern
Appalachian forests. Given the variability in the magnitude and time to
recovery of water yield response to wildfire, our results may not be
applicable to burned watersheds in other hydroclimatic settings.

In addition to the magnitude of the response in water yield, the time
to water yield recovery varies regionally. We showed that water yield in
the burned Talullah watershed returned to pre-burn levels after
approximately five years after the fire and three years after the initial
significant increase in water yield. This time to recovery is consistent
with forest harvesting studies in the region. For example, Swank et al.
(2014) showed that a water yield in a complete watershed clear-cut at
the Coweeta Hydrologic Laboratory returned to pre-harvest levels after
five years. The recovery in the Talullah watershed was found to be
shorter than in most other studies focused on Western U.S wildfires (Guz
et al., 2022, Meng et al., 2018, Zhao et al., 2016). A reasonable expla-
nation for this difference in recovery time is related to the fact that
biomass accumulation and post-disturbance forest recovery is influ-
enced by climatic factors (Anderson et al., 2006) with slower recovery in
arid forests and in colder, more humid forests as compared to Southern
Appalachian forests. Given the variability in the magnitude and time to
recovery of water yield response to wildfire, our results may not be
applicable to burned watersheds in other hydroclimatic settings.

While 35 % of the Tallulah watershed was impacted by wildfire, only
13 % of the Tallulah Rock Mountain fire perimeter was classified as high
burn severity and yet up to a 25 % increase in water yield was detected.
Caldwell et al. (2020) also detected increases in water yield from burned
watersheds that had as low as 21 % of their drainage area burned at high
severity. This suggests that studies focused on wildfires in the Western U.
S. may not be easily extrapolated to the 2016 SAE fires, possibly due to
climatic factors, differences in vegetation species and the infrequent
occurrence of fires in the Eastern U.S. However, changes in water yield
suggest a similar hydrologic recovery pathway with a sequence of
vegetation decline followed by increases in water yield, vegetation
re-growth and subsequent return to lower - although remaining
consistently above pre-fire - water yield. This is most evident in the
annual NBR trajectory as a percentage of pre-fire levels and the annual
difference from expected streamflow at Tallulah (Fig. 12).

4.3. Implications for management

The fire regime in the SAE is projected to shift under increased
drought conditions driven by climate change, resulting in more frequent
fires and larger burned areas (Robbins et al., 2024). Given the potential
for significant short and long-term water supply impacts following forest
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Fig. 12. a) Annual percentage from mean pre-fire NBR fitted values within Tallulah watershed burned areas and b) Difference from expected in annual streamflow at

Tallulah (based on paired watershed Chattooga).

Fig. 13. Difference from expected in annual streamflow at Tallulah (based on paired watershed Hiwassee).

disturbance and especially fires, managers need access to reliable
methods, data and tools to interpret and anticipate the potential effects
of fire-driven forest disturbance on watershed vegetation and hydrology.
These effects have been historically under-studied in regions with low
fire frequency.

This study presents novel results that provide managers with the
ability to estimate burn severity through remote sensing across a large
ecoregion, to determine the timeframe for post-fire vegetation recovery,
and to detect and quantify the effect of wildfire on annual water yield
and hydrologic recovery.

Managers can use this information to anticipate potential wildfire
impacts and to plan for adaptive forest management and preventive
interventions, including prescribed fires and management of forest fuel
loads. Managers can also use new scientific information regarding the
effects of infrequent fires to plan for post-fire forest management in-
terventions aimed at increasing forest resilience and maintaining a
reliable water supply. This improved knowledge is increasingly impor-
tant for managers planning for rapidly shifting fire regimes and antici-
pated increases in wildfire frequency associated with climate change.

4.4. Limitations and opportunities for future research

This study had some limitations that could impact transferability of
results to other watersheds and regions. First, there was limited avail-
ability of field observations of pre-fire and post-fire vegetation species to
inform vegetation recovery trajectories derived from remotely sensed
data in Tallulah watershed. Field observations could inform estimates of
tree canopy recovery as compared to understory vegetation. Second,
examination of fine-scale climate variables could provide additional
context to the vegetation and hydrologic recovery results presented in
this study. However, there are significant challenges in evaluating fine-
spatial resolution climatic variables in this region, including 1) there is a
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limited network of climate stations available, 2) the mountainous terrain
causes high spatial variability in climate variables even over short dis-
tances limiting applicability of available climate stations, and 3) gridded
climate data products that leverage observed climate variables to
extrapolate across the region, such as Parameter-elevation Regressions
on Independent Slopes Model (PRISM) and DAYMET gridded products
often have difficulty in estimating climate variables due to their fine
scale spatial variability (Behnke et al., 2016). Due to these limitations,
we did not attempt to consider fine-scale climate data as potential
explanatory variables in our assessment of vegetation and hydrologic
recovery. Third, there were limitations related to modeling burn severity
using remotely sensed data over large areas with frequent cloud
coverage. This study employed cloud masking and image reducers to
alleviate limitations related to frequent cloud cover in the SAE
Ecoregion.

And lastly, there was limited availability of pre-fire and post-fire
hydrologic records for other SAE watersheds impacted by the 2016
wildfire. A limited number of reference watersheds are suitable for
analyzing wildfire impacts, due to human disturbance and gaps in
continuous daily streamflow data collection. Additionally, watersheds
rarely overlap with wildfire burned areas, due to the smaller size of
wildfire in the Eastern U.S. The study approach combined established
methods to yield realistic and explainable results while alleviating these
limitations.

The focus of this study was to improve understanding of infrequent
wildfire impacts on vegetation and catchment dynamics in an under-
studied region, with the goal to augment the data and tools available
for managers, which enhances their ability to respond and plan to future
fire events. Areas of future research could include combining vegetation
indices at different spatial resolutions with field observations to address
knowledge gaps in post-fire vegetation re-growth. Future studies in
impacted watersheds with limited records or ungauged could inform
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planning to concomitantly reduce the risk of fires while improving the
effectiveness of post-fire forest management actions to maintain water
supplies. Lastly, future modeling efforts could explore the contribution
of climate variables to variations in vegetation response at fine spatial
and temporal resolution.

5. Conclusions

This study revealed opportunities for efficient cloud-computing es-
timates of high and moderate burn severity and vegetation recovery
trends across multiple wildfire perimeters following the 2016 fire
outbreak in the Southern Appalachian Ecoregion, and linked those
trends to post-wildfire water yield in a burned forested watershed. This
work is among the very few to make these connections between wildfire,
vegetation disturbance, and recovery, and ecosystem processes in the
eastern U.S.

Changes in annual streamflow in a burned watershed were detected
following wildfire through paired comparison with multiple unburned
watersheds, suggesting an increase and recovery in annual water yield
that coincided with vegetation disturbance and subsequent recovery as
detected through remote sensing. Despite limitations related to a small
sample size of hydrologic response and linkages between remotely-
sensed greenness and forest ecosystem recovery, this study advances
our understanding of how infrequent fires can impact catchment vege-
tation and hydrology in an understudied region. Future work can
leverage these findings by examining additional watershed and col-
lecting field data to evaluate vegetation recovery across broad regions of
the eastern U.S. The improved understanding provided by this study
augments the ability of managers to plan for an expected increase in the
frequency of forest fires and to anticipate the impacts on forested
mountain catchments and on water provision from these catchments.
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