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ABSTRACT

A predictive equation for estimating fire frequency

was developed from theories and data in physical

chemistry, ecosystem ecology, and climatology. We

refer to this equation as the Physical Chemistry Fire

Frequency Model (PC2FM). The equation was cal-

ibrated and validated with North American fire data

(170 sites) prior to widespread industrial influences

(before �1850 CE) related to land use, fire sup-

pression, and recent climate change to minimize

non-climatic effects. We derived and validated the

empirically based PC2FM for the purpose of esti-

mating mean fire intervals (MFIs) from proxies of

mean maximum temperature, precipitation, their

interaction, and estimated reactant concentrations.

Parameterization of the model uses reaction rate

equations based on the concentration and physical

chemistry of fuels and climate. The model was then

calibrated and validated using centuries of empirical

fire history data. An application of the PC2FM

regression equation is presented and used to esti-

mate historic MFI as controlled by climate. We

discuss the effects of temperature, precipitation, and

their interactions on fire frequency using the

PC2FM concept and results. The exclusion of

topographic, vegetation, and ignition variables from

the PC2FM increased error at fine spatial scales, but

allowed for the prediction of complex climate effects

at broader temporal and spatial scales. The PC2FM

equation is used to map coarse-scale historic fire

frequency and assess climate impacts on landscape-

scale fire regimes.

Key words: North America; climate; dendro-

chronology; fire frequency; physical chemistry.

INTRODUCTION

Climate influences, specifically temperature and

precipitation, have been identified as primary

controls on global wildfire occurrences in the

modern era (ca. 1980-present) (Westerling and

others 2006; Bernard and Nimour 2007; Krawchuk

and others 2009; Parisien and Moritz 2009).

Beyond climate attribution, little progress has been

made toward describing the long-term physical and

chemical mechanisms of fire occurrence rates or

toward parameterizing fire–climate models with

significant predictive ability (Swetnam and Betan-

court 1990). Although recent analyses have begun

exploring modern era climate–fire controls using

newly developed satellite detection methods, sig-

nificant gaps in our understanding of these controls

remain. Fire models, particularly those describing

rates of occurrence forced by climate, are needed to
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assess carbon emissions (Kaiser and others 2009),

fire–vegetation feedbacks and alternate stable states

(Beckage and Ellingwood 2008), and potential cli-

mate change effects on wildfires.

North American ecosystems are strongly influ-

enced by temperature and precipitation, two

important physical–chemical factors controlling

their fire regimes (Wright and Bailey 1982; Pyne

and others 1996). Knowledge of the fire history

record provides an ecological basis for past and

future management and restoration (Swetnam and

others 1999; Pausas and Keeley 2009). Much of

North America is without quantitative scientifically

based fire regime information. Currently, conti-

nental-scale models of fire regimes are based on

vegetation associations (Keane and others 2002;

Hann and others 2004) that have resulted from past

climate and fire conditions. More recent modeling

efforts have demonstrated the importance of cli-

mate variables as predictors in modern fire regimes

(Westerling and others 2006, 2011; Parisien and

Moritz 2009). In many locations, site-specific fire

history may never be obtained owing to a lack of

possible charcoal or fire scar chronologies. There-

fore, there is value in a predictive model that syn-

thesizes existing fire history information and

formulates fire frequency estimates (for example,

mean fire interval, MFI) based on the physical and

chemical properties of climate. The model described

in this work is useful in quantifying the role of

climate in fire regimes for ecosystems lacking in

empirical fire regime information.

Faced with the problems and effects of wildland

fire, it is easy to overlook that fire is fundamentally

a chemical reaction. As such, chemical reactants

and reactions in ecosystems are subject to the

principles of physics and chemistry as well as many

other ecosystem processes (Figure 1). Here, we use

the principles of physical and concentration

chemistry along with fire history data to develop,

calibrate, and validate a model that predicts MFI.

The model uses climate variables via chemistry to

estimate MFI. The logic of the Physical Chemistry

Fire Frequency Model (PC2FM) approach and form

was inspired by Arrhenius’ equation—a funda-

mental rate equation in physical chemistry. Our

overall approach combines both theoretical chem-

istry and fire ecology to develop an empirical model

(Table 1) that translates molecular chemistry to an

ecosystem process.

The PC2FM utilizes long-term (that is, multi-

century) ecosystem fire event data because: (1) fires

can occur infrequently (Gavin and others 2007), (2)

climate–fire relationships during post-industriali-

zation periods are masked by anthropogenic effects

(Marlon and others 2008; Stambaugh and Guyette

2008), and (3) decades of fire suppression in many

fire-dependent ecosystems may lead to underrep-

resentation of burning rates in modern era (�1900

to 2010 CE) fire records. Studies involving paleofire

data (for example, fire scars, charcoal) show that

wildfire occurrences are influenced by climate

(Clark 1988; Bergeron and others 2004; Kitzberger

and others 2007), vary spatially and temporally,

and are affected by many finer-scale factors such

as ignition rates and topography (Morgan and

others 2001). Less obvious, however, are the

physical–chemical relationships controlling wildfire

occurrence through a continuum of climates.

The calibration of physical–chemical differences

affecting fire in ecosystems will be particularly

important in light of potential future climate

changes (Goldhammer and Price 1998; Stocks and

others 1998; Westerling and others 2006).

A significant proportion of the variation in fire

frequency at coarse spatial and temporal scales can

be explained by terms that describe how fire

depends on the influence of temperature, activa-

tion energy, precipitation, and reactant chemistry.

To demonstrate this we used a functional rela-

tionship, a negative exponential, comparable to

Figure 1. A conceptual diagram describing the relation-

ship of the three climate variables (precipitation, tem-

perature, and oxygen) used in the two model parameters

(gray boxes) of the Physical Chemistry Fire Frequency

Model (PC2FM). Temperature and precipitation are used

to create a proxy for available fuel (Figure 2). Both bio-

logical and combustion processes are embedded in the

PC2FM using temperature and precipitation interactions.

Arrow widths represent the relative contribution of the

climate and reaction processes in the PC2FM. Arrow

colors represent temperature (red), precipitation (blue),

and oxygen (black).
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reaction rate calculations applied in physics and

chemistry. This modeling approach does not ex-

plain all variation in the fire frequency of ecosys-

tems, much of which occurs at finer scales. In most

ecosystems, fine-scale fuel structure, moisture, fuel

type, micro-climate, geography, topography, igni-

tion frequency, and many other local factors con-

trol the variance in fire frequency. Therefore, we

derived an empirical model from three variables

(temperature, precipitation, and oxygen) and

combined these into two parameters that estimate

fuel availability (concentration, moisture) and

combustion rate processes (for example, tempera-

ture, activation energy). The physical, chemical,

and mathematical formulations of the two param-

eters are based on experimental and theoretical

chemistry. We fit the model with historical fire

frequency and climate data as inputs to generate

outputs of MFIs. The objectives of this model

development and research were to:

1. Construct a model for use with common climatic

and spatial data that would enable the climate

forced fire frequency estimates at variable scales

and time periods (past and future),

2. Test the use of theoretical chemistry as an

approach for structuring model parameters that

describe ecosystem processes.

THE CONCEPT OF THE PC2FM

The PC2FM modeling approach utilized the Arrhe-

nius equation k ¼ A0exp�Ea=RT
� �

as a template for

the effects of physical chemistry on fire frequency.

We call this model parameter ARterm (Equation 1:

b1A0expEa=RT ). A second model parameter PTrc,

(Equation 1: b2
1

P2T

� �
is a proxy for fuel availability

(concentration and moisture) based on climate

data. The details of the PC2FM’s chemistry and fire

ecology concepts are generally written as:

MFI ¼ b0 þ b1A0expEa=RT þ b2

1

ðP2=TÞ

� �
; ð1Þ

where MFI is the mean fire interval; b0, b1, and b2

are the potential regression coefficients for the

intercepts ARterm and PTrc; Ao is a proxy term for

molecular collision frequency; Ea is the reactant

activation energy; R is the universal gas constant;

T is temperature; and P is precipitation.

Rate Definitions and Analogy (MFI)

MFIs are the ecological analog of rate constants (k)

in the output of the Arrhenius equation and the

PC2FM’s ARterm. The change from a rate constant

to MFI is a change from rate to likelihood. The

analogy works because weather and climate con-

ditions are dominant factors that affect combustion

and fire occurrence. The likelihood a fire will ignite

and the probability that it will spread are based on

the ecological and chemical characteristics of the

reaction environment.

The translation from the Arrhenius rate constant

(k) to the PC2FM’s fire frequency rate (MFI) in

reactions reflects a change in units from reactions per

second to fires per year (1/MFI). The rate constant

(k) and MFI are rates that scale in opposite directions.

The negative sign in the Arrhenius exponential term

is removed because of this difference in the rate

metric between the ecological measures such as MFI

(time/# combustions) and chemistry measures such

as rate (# combustions/time).

Collision Frequency (Ao), Reactants,
and Precipitation (ARterm)

Ao in the Arrhenius equation represents the rate of

possible molecular collisions of the reactants (car-

bon compounds and oxygen) based on their phys-

ical and chemical properties. In ecosystems, one

important non-reactant molecule (for example,

water vapor) can decrease the collision frequency

of reactants in gaseous combustion reactions. Fuel

moisture and humidity are extremely variable in

ecosystems and can lead to considerable variability

in collision frequency. We use annual precipitation

as a proxy for fuel moisture and humidity in eco-

systems. When water vapor is introduced into a

volume of dry air, the number of other molecules

(primarily N2 and O2) in the volume must decrease.

Thus, humidity decreases the partial pressure of O2,

dilutes reactants (given an equal temperature and

pressure), and decreases the probability of a colli-

sion and reaction. Collisions among reactant mol-

ecules (for example, various carbon compounds

and oxygen) must have a definite geometric ori-

entation of their electrons (the steric factor in col-

lision theory) for a reaction to occur. Because the

complexity of natural carbon molecules (fuel) is

great among and within ecosystems we do not

differentiate among ecosystems with respect to the

steric factor in collision frequency.

Activation Energy (Ea), (ARterm)

The activation energy (Ea) required to begin a

combustion reaction among different wildland

fuels ranges from about 80 to more than

140 kJ mol-1 (Roberts 1970; Ragland and Aerts

1991; Leroy and others 2010). Processes such as
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fuel decay and production can influence activation

energy requirements even though they are often

mitigated by catalysts and enzymes. We use a

constant value for Ea in the PC2FM because the

complexity of natural fuels and activation energies

in ecosystems is not the focus of our research. We

based our Ea value on literature describing activa-

tion energy dynamics in forest and carbon based

fuels and model outputs for a range of Ea values.

We selected a value of Ea that was a best fit for the

data (132 kJ mol-1) based on regression results

using Ea values ranging between 100 and

140 kJ mol-1.

Universal Gas Constant (R), (ARterm)

In chemistry, the universal gas constant (R) is used

in the formulation of reaction equations involving

gases and is needed to estimate reactant concen-

trations at given pressures, volumes, and temper-

atures. The gas constant does not have an

equivalent ecological application in models of fire

frequency because of the large difference in scale of

application. The Universal gas constant is used in

the PC2FM as the proportionality constant. The gas

constant (R) is given as energy (Joules) per molar

mass (mol) per a standard temperature (K).

Temperature (T), (ARterm)

Model development in extremely low temperatures

indicated that the Kelvin temperature scale is

necessary for determining fire intervals using

physical chemistry. The physical reason for Kelvin

units is that the Arrhenius equation is based on

thermodynamic and kinetic theories. These theo-

ries are based on molecular forces that begin at

absolute zero. Thus, we converted temperature

data from Fahrenheit or Celsius to Kelvin to be

consistent with the principles of physical chemistry

and to allow model representation in regions with

cold (<0�C) mean annual temperatures.

Fuel Concentration and Quality
in Ecosystems (PTrc)

Fuel loading and fuel moisture are important fac-

tors controlling fire behavior and rate. Thus, a

second model parameter was developed for char-

acterizing climate effects on ecosystems via reactant

(fuel) concentration and quality (moisture con-

tent). For this, we developed a reactant availability

parameter (PTrc) from a combination of precipita-

tion and temperature. This parameter is not only a

proxy for biomass (fuel) but for reactant availability

with respect to moisture. The concentration of

reactant molecules is important to reaction rates,

but if they are enclosed in non-reactant molecules

(H2O) then they do not contribute to a concentra-

tion effect. This parameter was developed through

model testing of MFI estimates in ecosystems that

rarely burn because of very low fuel concentrations

or very high fuel moisture. The function of PTrc is to

account for the change in the direction of reactant

availability from factors controlling concentration

to moisture (Figure 2). This parameter is sensitive

to small differences in precipitation at very low

levels (for example, annual precipitation of 10–

40 cm). For instance, there are only small differ-

ences between the PTrc of rarely burned deserts to

frequently burned semi-arid grasslands.

METHODS

Fire History Data

Development and calibration of the PC2FM utilized

MFI data from throughout North America. Tree-

ring dated fire scars have provided long-term

records of fire frequency and fire–climate interac-

tions from diverse forested sites across North

America (Supplementary Data 1 and 2). For more

than 30 years these data and other complementary
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paleofire evidence (for example, charcoal) have

been the foundation of fire and ecosystem theories

(Dieterich and Stokes 1980; Swetnam and others

1999; Lynch and others 2004; Whitlock and others

2004). MFI data represent time periods prior to

widespread industrial influences that significantly

altered fire regimes through increased ignitions, fire

suppression, changes in native and domestic grazing

regimes, grain crop agriculture, and other land-use

activities that modified or fragmented ecosystems

and fuels (Pyne and others 1996). We assumed that

minimizing industrial era effects on MFIs will

maximize calibration accuracy of the PC2FM. The

current PC2FM database includes fire history study

sites across North America with annual mean

maximum temperatures ranging from 261.1 to

305.1 K (-12 to 32�C), annual mean precipitation

ranging from 8 to 456 cm, and MFIs ranging from 1

to more than 400 years. Annually averaged tem-

perature and precipitation data provide the most

meaningful climate data for this extensive database

because they are closely related to the biological and

physical constraints of annual fuel production and

decay. In addition, analyses of long-term fire rates

with diverse climates and fire seasons are compa-

rable only at an annual scale or longer.

Fire scar history data were gathered from pub-

lished scientific studies, new and recently completed

fire scar history data sets, and the International

Multiproxy Paleofire Database (NOAA). The PC2FM

fire history database consisted of 170 fire scar sites

(Supplementary Data 1). Sites were included in the

database if they satisfied these criteria:

(1) Site fire histories were deemed important

when they represented distinct climate condi-

tions, expanded the range in the length of MFIs

in the database, covered the pre-industrial

period, and to a lesser extent expanded the

geographical coverage of the database.

(2) We used composite MFIs as a robust estimate of

the occurrence of fire within a given area

(Dieterich and Stokes 1980). This type of fire

interval is subject to increasing frequency of

fire with increasing area, therefore, compari-

sons between sites necessitate comparable

study areas (Baker and Ehle 2001; Falk and

others 2007; Heyerdahl and others 2001). Sites

included in this study averaged 1.32 km2 in

area, ranged from less than 0.10–8.1 km2, and

had a standard deviation of 1.27 km2. Only

two sites were larger than 4 km2. Prior to

analysis we found that within this range of site

area differences, there was no significant cor-

relation between site area and MFI (r = 0.056,

P = 0.54) as might be expected by having var-

iable sample areas.

Other Data and Estimates

As trees occupy a stratified sample of ecosystems

that meet conditions of moisture and temperature

necessary to support large woody plant growth, we

needed other fire frequency data sources to char-

acterize regions where trees do not grow or are not

scarred by fires. In addition, at large spatial scales,

fire scar histories are often stratified and biased

because they come from tree species that grow in

the positions of the landscape where fire intervals

are shorter. To minimize these influences we sup-

plemented the fire scar data with charcoal data

(three sites) and expert estimates (seven ecosys-

tems) (Schmidt and others 2002). Although many

charcoal study sites exist, few were used because of

their often low temporal resolution compared to

fire scars on trees.

Climate Data

PC2FM parameters were tested and chosen based

on physical chemistry, ecological relevance, statis-

tical significance and explanatory power, and, to a

lesser extent, ability to be mapped using a geo-

graphic information system (GIS). Currently the

PC2FM utilizes three covariates of MFIs: annual

mean maximum temperature (Tmax), mean annual

precipitation (P), and the estimated partial pressure

of oxygen. The partial pressure of oxygen (Fig-

ure 1) is estimated from elevation (Jacobson 2005).

Climate covariates represented averages for the

1971–2000 CE (30 years) period. Two other climate

variables were tested for significance using corre-

lation analysis but were not used; annual mean

minimum temperature and annual mean temper-

ature. It is possible that annual mean temperature

could be substituted for Tmax; however, Tmax has

consistently explained a greater percentage of var-

iance during diagnostic tests. The Tmax data used for

calibration is a ‘proxy’ in the sense that the model

period (�1650–1850 CE) is different than the cli-

mate data period (1971–2000 CE). We maintain

that errors caused by this difference in time period

are minimal because the temporal variability in

temperature (Mann and others 1998) is small

(temperature increase of �0.4 K from 1750 to 1970

CE), particularly compared to the spatial variability

that exists among sites (26 K). We subtracted 0.4 K

from annual mean maximum temperatures to

correct for recent warming since the period of the

MFI data.
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Statistical Development, Calibration
and Validation of the PC2FM

The theoretical based formulation of the two

parameters (ARterm, PTrc) and the expected re-

sponses of the model were tested by the empirical

MFI data. We used multiple regression analysis and

coefficients to test parameters of the PC2FM. This

was necessary because the molecular dimensions,

molecular species, numeric complexity, and reactant

concentrations are unknown for many important

reactions in ecosystems. Regression analysis was

used to develop coefficients and parameter struc-

tures of the PC2FM thereby forming the ‘‘bridge’’

between physical chemistry and ecosystem fire fre-

quency. Regression coefficients were translated

from the relatively fine-scale units of chemistry (that

is, kJ-1 mol-1, molecular reactions per second, and

partial pressure of oxygen) to the landscape-scale

(�1 km2) fire frequency (MFIs) of the PC2FM.

The PC2FM equation was selected from regres-

sions utilizing bootstrapping methods. Final model

selection was based on chemical processes (that is,

rate equations), knowledge of fire ecology, and test

statistics such as variance inflation factors (VIFs),

correlations, residual analysis, normality, variable

significance and stability, and model r2. The distri-

bution of 100 coefficients of determination, calcu-

lated from randomly chosen halves of the data with

replacement, was used to assess the models cali-

bration, validity, and stability.

Mapping Estimates of the PC2FM

PC2FM estimates of MFIs were mapped using

ESRI�ArcGIS� software (ESRI (Environmental Sys-

tems Research Institute) 2005). Grid data of mean

maximum temperature and mean annual precipi-

tation (PRISM data; Daly and others 2004) were

applied to Equation 2 to produce maps of MFIs for

the pre-Euro American settlement period (�1650 to

1850 CE). A digital elevation model was used to map

the partial pressure of oxygen (Jacobson 2005).

Model Prediction Responses at Different
Temperatures and Precipitation

We used the PC2FM to examine the model esti-

mates of MFI change in three ecosystem scenarios

with hypothetical average temperatures: cold at

280 K, warm at 289 K, and hot at 297 K. Precipi-

tation thresholds were defined as inflection points

along MFI prediction lines where differences in

precipitation changed the direction of MFI response

to climate. This modeling exercise is meant to yield

quantitative estimates of the interaction between

the opposing effects of precipitation on fire regimes

(that is, fuel amounts and moisture) at different

temperature regimes. In addition, this exercise was

done as a diagnostic test of the behavior and per-

formance of the model for prediction.

RESULTS

Model Coefficients and Statistics

The PC2FM is described by the equation:

MFI ¼0:232þ 2:62�10�28�ARterm
� �

þ 52�PTrcð Þ;
ð2Þ

where MFI is the mean fire interval in years, ARterm

is Ao � expEa=ðRTmaxÞ
� �

, Ao ¼ P2
�

ppO2, P is mean

annual precipitation in cm, ppO2 is the estimated

partial pressure of oxygen: 0.2095 9 (exp(-0.12 9 elevation))

is the elevation in km, exp is 2.718, Ea is 132 kJ

mol-1, R is 0.00831 kJ mol-1 K-1, Tmax is the

annual mean maximum temperature in K, and PTrc

is 1/(P2/Tmax).

All variables were significant (P < 0.001). Mul-

ticollinearity among predictor variables was negli-

gible, the variance inflation factor was 1.01, the

correlation (r = 0.056) between ARterm and PTrc

was not significant, and the residuals were nor-

mally distributed. The 95% confidence limit for the

model was ±2.5 years (Figure 3A). Model predic-

tion limits were ±35 years. The PC2FM was cali-

brated with 86 observations and validated on

random selections of half of the 170 data observa-

tions. Based on 100 model runs the average tested

model coefficient of determination (r2) was 0.80

(range = 0.59–0.90) (Figure 3B). We estimated the

partial r2 of the independent variables using a

natural logarithmic transformation of the depen-

dent variable (MFI). Estimates of partial r2 were

0.60 for ARterm and 0.20 for PTrc.

Mapping

We developed a model that could map spatially

explicit estimates of MFIs utilizing three variables:

temperature, precipitation, and the ppO2. We mapped

PC2FM estimates of historic MFIs (Figure 4) for the

conterminous United States utilizing gridded climate

data (PRISM Products; Daly and others 2004).

Modeled Responses of Fire Frequency to
Changing Climate Conditions

The PC2FM showed different responses to three

different ecosystem climate scenarios. The three

temperature scenarios resulted in three different
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threshold values for the interactive effects of

temperature and precipitation on fire regimes

(Figure 5). This exercise yielded quantitative esti-

mates of the thresholds that divided the opposing

effects of precipitation on fire frequency (that is,

fuel amounts and moisture) at different tempera-

ture regimes. In addition, this exercise illustrated

which climate parameter (annual maximum tem-

perature or precipitation) was most important or

dominant for different ecosystem climates. Based

on the modeled responses, increases in precipita-

tion in cold-dry (>40 cm) ecosystems are expected

to greatly increase in the length of MFIs (decrease

fire frequency) whereas increases in precipitation

in hot-dry (<100 cm) ecosystems are expected

to decrease the length of MFIs (increase fire fre-

quency). Large increases in precipitation are

expected to very slowly increase the length of MFIs

in hot-wet (>100 cm) ecosystems.

DISCUSSION

Domain, Range, Data, and Validation

The PC2FM predictions were validated by reason-

able estimates that covered a broad range of ter-

restrial ecosystems from deserts to rain forests. The

PC2FM predicted very long fire intervals in deserts,

near glacial landscapes, as well as wet-cool and

heavily fueled rainforest ecosystems. The model’s

explanatory power (�80% of variance) attests to the

large influence of climate on controlling rates of fire

at broad scales. The longest predicted MFIs in North

America were in deserts (for example, Death Valley,

Nevada) and near glacial landscapes where MFIs

exceeded 3,000 years. The meaning or accuracy of

estimates this far beyond the range of any known

data is questionable. Despite this these estimates,

though coarse, do fall within a plausible range and

magnitude generated by the model. The shortest

predicted MFIs were in regions of warm climates

where vegetation can rapidly replenish fuels. Short

MFI predictions (<3 years) are validated by fire scar

studies (Fry and Stephens 2005; Stambaugh and

others 2011; Van Horne and Fulé 2006).

The Rate (ARterm) and Fuel (PTrc)
Parameters

The PC2FM approach was based on rate and fuel

parameters. The ARterm had the most power in

explaining the variance in MFI and worked alone

in ecosystems where fuel production is sufficient to

allow fires to occur relatively frequently. When

annual fuel production is limited, as is the case in

very hot or cold-dry climates such as those repre-

senting desert or tundra ecosystems, then the

importance of the ARterm was diminished com-

pared to the PTrc parameter. In these ecosystems

reactant availability and/or concentration became

the dominant factors and reaction rate factors

become less important. PC2FM output is one of the

few quantitatively based fire interval estimates for

these very long fire interval ecosystems.

To illustrate the utility of model parameterization

(that is, use of ARterm and PTrc) we compared the

results of multiple regression models without

parameterization of the three variables (precipita-

tion, temperature, and oxygen). When this multi-

ple regression model (lacking physical chemistry

theory) is attempted it resulted in models with far

lower explanatory power and estimates with

increased error. Bootstrapped estimates of MFI

with the three variables yielded r2 results that

ranged from 0.26 to 0.56 with an average r2 of 0.41.

These results are not only far lower than our

chemistry driven parameterization results (see

‘‘Results’’ section) but also exhibited extremely

variable partial r2 among the three variables when

bootstrapped. Thus, the parameterization using

chemistry nearly doubled the explanatory power of

the model (that is, r2 increase from 0.41 to 0.80).
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The dynamics of oxygen’s role in combustion

varies greatly from the confines of experimental

chemistry to ecosystems. Despite the variability in

oxygen among ecosystems, combustion reaction

chemistry remains the same (six times more O2

molecules required than fuel molecules, for

example, C6H12O6 + 6O2). In ecosystems, the

continual addition of this reactant by wind is

extremely variable. For example, for flame com-

bustion in a 10 m s-1 wind, replenishment of O2 to

a reaction site is about 40 times greater than that

under conditions of near zero wind speed. The

importance of wind speed in ecosystems likely

outweighs the ppO2 in the atmosphere many fold.

Although wind was not considered as a variable in

the PC2FM, it could be a valuable addition in

future models.

Regression Coefficients

Translating the meaning of molecular reactions

into ecosystem rates requires either exact knowl-

edge of the huge number of chemical processes in

an ecosystem or the use of ‘translator coefficients’.

We assert that regression coefficients, as used in the

PC2FM (Equation 2), can operate as a bridge

between the metrics used for molecular reactions

and the metrics used for ecosystems and climate.

Examples of this are converting mille-seconds

(chemical reaction rates) to years (mean fire

intervals in ecosystems), moles (atomic weight) to

reactant density (the partial pressure of O2),

opposing rate metrics (number years per fire (MFI)

versus reactions per second).

The Non-Vegetation Modeling Approach

We intentionally excluded vegetation in the

PC2FM because our main interest was to parame-

terize climate forcing of fire regimes. Nonetheless,

feedback occurs between vegetation and fire fre-

quency (Flannigan and others 2005), causing

short-term forcing in fire frequency due to vege-

tation type. The lack of vegetation type and struc-

ture in the PC2FM may limit its ability to predict

finer-scale variability (for example, <1 km2) in fire

frequency and result in increased model confidence

limits (Figure 3A). Despite this, a major strength of

a vegetation-free approach is the applicability of

the model for predictions of fire frequency in situ-

ations where vegetation is unknown, data are

unavailable, or not of primary interest. PC2FM

climate-based output could provide opportunities

to compare the influence of vegetation (promotion

or resistance) in further affecting fire frequency.

Temperature Effect on Fire Frequency

Differences in fire frequency due to temperature

arise from a number of climate, ecosystem, and

chemical pathways such as the length of the fire

season, duration of snow cover, relative humidity,

and fuel production and decomposition. Our anal-

ysis suggests that temperature has the strongest

affect on fire frequency and is an important com-

ponent of the ARterm parameter as well as in the

reactant availability parameter (PTrc). Further tests

of the PTrc parameter’s ability to define tempera-

ture–fire frequency thresholds would likely be

useful for describing global climate change influ-

ences on fire regimes.

In the calibration of our model, we adjusted

temperature means (Daly and others 2004) by

-0.4 K to account for warming that has occurred

between the period of fire frequency observations

and temperature means. Potential shortfalls with

this approach are: it is doubtful that changes in

temperature have been spatially homogeneous for

all sites, not all fire history records span exactly

the same period, and the spatial variability of

temperature fields are not known for prehistoric

periods that may have been significantly different,

particularly during the Little Ice Age. The effect or
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Figure 5. PC2FM modeled MFI responses to precipita-

tion change based on three temperature scenarios.

Inflection points (ellipses) at the bottoms of the model

prediction curves estimate thresholds where phase

changes occur for the influence of precipitation on fire

frequency (MFI). These precipitation thresholds indicate

a process change in the dominant ecosystem response

from reactant concentrations (fuel production) in dryer

ecosystems to reaction rates (temperature and moisture

effects on combustion processes) in wetter ecosystems.
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potential error imposed on PC2FM due to the

temperature adjustment currently is not known,

but could lessen the strength of predictions. An

important factor to consider is that the differences

in mean annual temperatures between fire history

sites (spatial variability) are much larger (more

than 50 times greater) than the difference imposed

by the temperature adjustment (temporal vari-

ability). Nevertheless, future work considering

these effects and differences may permit refine-

ment of the PC2FM.

Balancing Contrasting Precipitation
Effects on Fire Regimes

The effect of precipitation on fire frequency is

complex. Although it may seem intuitive that fire

frequency is relatively lower in landscapes where

annual precipitation is high, this relationship is not

well supported by data and literature. Increases in

precipitation have a negative influence on fire

frequency due to influences such as increased

fuel moisture and relative humidity. In contrast,

increased precipitation generally has a positive

influence on fuel production. Fire history data

indicate that warm regions with either high pre-

cipitation (for example, Gulf Coast) or low precip-

itation (for example, southwestern U.S.) can have

very frequent fires.

The application of the PC2FM to three tempera-

ture scenarios with a range of precipitation values

illustrated the value of this empirically validated

model output for understanding relationships

between precipitation, temperature, and fire fre-

quency (Figure 5). This scenario analysis may aid

in identifying threshold climate conditions for fire

regimes. For example, PC2FM maps (Figure 4) and

scenarios (Figure 5) show increases in precipitation

will decrease MFI in the dry western regions of the

Great Plains but increase MFI in the wetter eastern

regions of the Great Plains.

Map Interpretations

Fire frequency maps provide an opportunity for

examining the continental-scale differences in fire

regimes (Figures 4, 5). Visual inspection of mapped

MFIs illuminate that the southern regions of the

U.S. generally burned more frequently than the

northern regions reflecting a latitudinal tempera-

ture trend that is most apparent in the north–south

variability of MFIs in the Great Plains where ele-

vation, topography, and precipitation differences

are minimal.

The most complex region of the U.S. with respect

to spatial variability in fire frequency is the western

coastal region. The existence of abrupt spatial dif-

ferences in oxygen, temperature, precipitation, and

their interactions result in large differences in MFIs

within short spatial extents. For example, predicted

MFIs from the Willamette Valley, Oregon (MFIs

�6 years) increase more than 30-fold to the high

elevation areas of Mount Hood (>200 years)—a

distance of 40 km. The northwestern states have

both some of the longest and shortest mean fire

intervals (1.3–>400 years) in the continental US

(Fry and Stephens 2005; Agee 1993). Spatially, this

contrasts greatly with MFI in the southeastern US

where forcing of mean fire intervals by climate is

relatively homogeneous from central Texas to

South Carolina, a distance of over 2,000 km.

Fine-scale complexity of fire regimes is not rep-

resented in our mapping for two reasons: (1)

available climate data depicting long-term climate

means are relatively coarse, and (2) the focus of

this model was calibration and depiction of climate

effects. The PC2FM prediction map (Figure 4) has a

1 km resolution—a limitation imposed by the pre-

cision of the fire frequency data. It is important to

reiterate that Equation 2 only utilizes climate data

and that other potentially relevant finer-scale fire

variables such as vegetation, topography, aspect,

and human ignition, and land use are not consid-

ered. Omission of these variables certainly causes

error in MFI estimation. For example, PC2FM MFI

estimates for the Ozark Plateau (Missouri and

Arkansas) lack the landscape-scale spatial com-

plexity that has been documented through fire scar

history studies and is attributed to topography

(Guyette and others 2002; Stambaugh and Guyette

2008).

Ignition Frequency

The omission of ignitions (variability in the Ea

term) from our model is an obvious deletion of an

important frequency factor. With no ignitions

(required activation energy, Ea) there can be no

cascading chemical reaction. We chose not to

include ignitions for several reasons: (1) little if any

lightning or anthropogenic data are available for

historic ignitions, (2) ignitions were not part of the

climate focus of this the model, and (3) ignitions,

particularly anthropogenic ignitions, have varied

greatly through time.

Fire histories which incorporate human popula-

tion and cultural information have shown that

anthropogenic ignitions can greatly alter fire

frequency (Guyette and others 2002). Where
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lightning ignitions are rare fire frequency is ‘con-

ditional’ on human ignitions. Although previous

models have used human population density as an

ignition proxy (Guyette and others 2006a, b; 2010),

the precise calibration between fire frequency and

population density is difficult due to the uncer-

tainty of population densities and cultural fire uses

(Barrett and others 2005; Mooney and others 2007;

Mooney 1928; Swanton 1952). Furthermore, we

have found that, at relatively coarse spatial and

temporal scales (that is, regions and centuries), fire

frequency variability caused by local factors such as

vegetation type, topography, grazing, and human

ignitions becomes less important.

Applications

Parameterization of the PC2FM resulted from both

the application of theoretical chemistry to ecosys-

tems and validation by empirical and statistic

analyses. We presented two applications of this

physical chemistry concept (Equation 2 and map-

ping), however, other potential applications likely

exist. The PC2M estimates can be useful as a

comparison in considering the strength of other

important non-climatic factors affecting fire fre-

quency such as vegetation, topography, grazing,

ignitions, or fire suppression. Single-site fire fre-

quency predictions may be possible utilizing local

climate data as input to the PC2FM. Estimating

climate influences on MFIs in the future and dis-

tant past are another potential application of the

PC2FM. Models such as the PC2FM may provide a

new approach to considering the importance of

environmental chemistry toward understanding

ecosystem processes well beyond fire regimes.

Despite the usefulness of the mapping predictions,

the coefficients and variable identification of the

PC2FM are important because they aid in the

transfer of this approach to other continents and

climate conditions.

CONCLUSIONS

The successful calibration and validation of the

PC2FM model supports the hypothesis that theo-

retical chemistry has potential for the parameteri-

zation of variables in ecosystem studies.

Understanding the model can provide ecologists

with a quantitative framework for understanding

climate effects on ecosystems and their fire regimes.

The model and mapped estimates can provide

information on fire regimes from spatial or temporal

climate data or scenarios. Mapped estimates of MFIs

will aid in understanding fire’s historic importance

in the many locations that will never have any local

fire regime or historical ecology information. The

model and map could be used in conjunction with

soil, geology, and plant community data to examine

the effects of fire on flora and fauna with some

degree of independence from modeled fire histories

based on species occurrences. Though the model’s

primary purpose is related to understanding the

physical chemistry related to climate and fire, the

relative effects of other fire regime factors are likely

also to be better understood.

ACKNOWLEDGMENTS

Development of the PC2FM was supported by the

Joint Fire Science Program (Project 06-3-1-16), the

National Park Service and Great Plains Cooperative

Ecosystem Studies Unit (CESU), and the US Forest

Service Northern Research Station. We thank the

many authors who have made their work available

through publications and the International Mul-

tiproxy Paleofire Database (see Supplementary

Data 2) as well as the comments provided by

reviewers.

REFERENCES

Agee JK. 1993. Fire ecology of the Pacific Northwest forests.

Washington, DC: Island Press.

Atkins PW. 1986. Physical chemistry. 3rd edn. New York: W.H.

Freeman and Company. 857 pp.

Baker WI, Ehle D. 2001. Uncertainty in surface-fire history: the

case of ponderosa pine forest in the western United States.

Can J For Res 31(7):1205–26.

Barrett S, Swetnam TW, Baker WL. 2005. Indian fire use:

deflating the legend. Fire Manag Today 65:31–3.

Beckage B, Ellingwood C. 2008. Fire feedbacks with vegetation

and alternative stable states. Complex Syst 18:159–73.

Bergeron Y, Gauthier S, Flannigan M, Kafka V. 2004. Fire re-

gimes at the transition between mixedwood and coniferous

boreal forest in Northwestern Quebec. Ecology 85:1916–32.

Bernard ML, Nimour N. 2007. Wildfires, weather, and produc-

tivity. In: Butler BW, Cook W, comps. The fire environment:

innovations, management, and policy; conference proceed-

ings. USDA Forest Service RMRS-P-46CD.

Bond WJ, van Wilgen BW. 1996. Fire and plants. London:

Chapman & Hall. 263 pp.

Clark JS. 1988. Effects of climate change on fire regime in

northwestern Minnesota. Nature 334:233–5.

Chandler C, Cheney P, Thomas P, Trabaud L, Williams D. 1983.

Fire in forestry. New York: Wiley. 450 pp.

Daly C, Gibson WP, Doggett M, Smith J, Taylor G. 2004. Up-to-

date monthly climate maps for the conterminous United

States. In: Proceedings of the 14th American Meteorological

Society conference on applied climatology, January 13–16,

2004. Seattle WA: American Meteorological Society.

Dieterich JH, Stokes MA. 1980. Proceedings of the fire history

workshop. USDA Forest Service, GTR-RM-81.

Predicting Fire Frequency 333



ESRI (Environmental Systems Research Institute). 2005. ArcGIS

software v. 9.1. Redlands, CA: ESRI.

Falk DA, Miller C, McKenzie D, Black AE. 2007. Cross-scale

analysis of fire regimes. Ecosystems 10:809–23.

Flannigan MD, Amiro BD, Logan KA, Stocks BJ, Wotton BW.

2005. Forest fires and climate change in the 21st century.

Mitig Adapt Strat Global Change 11:847–59.

Fry DL, Stephens SL. 2005. Influence of humans and climate on

the fire history of a ponderosa pine-mixed conifer forest in the

southeastern Klamath Mountains, California. For Ecol Manag

223:428–38.

Gavin DG, Hallett DJ, Hu FS, Lertzman KP, Pritchard SJ, Brown

KJ, Lynch JA, Bartlein P, Peterson DL. 2007. Forest fire and

climate change in western North America: insights from sed-

iment charcoal records. Front Ecol Env 5(9):499–506.

Goldhammer JG, Price C. 1998. Potential impacts of climate

change on fire regimes in the tropics based on MAGICC and a

GISS GCM-derived lightning model. Climatic Change

39:273–96.

Guyette RP, Muzika RM, Dey DC. 2002. Dynamics of an

anthropogenic fire regime. Ecosystems 5:472–86.

Guyette RP, Spetich MA, Stambaugh MC. 2006a. Historic fire

regime dynamics and forcing factors in the Boston Mountains,

Arkansas, USA. For Ecol Manag 234:293–304.

Guyette RP, Stambaugh MC, Muzika RM, Dey DC. 2006b. Fire

scars reveal variability and dynamics of eastern fire regimes.

In: Dickinson MB, Ed. Fire in eastern oak forests: delivering

science to land managers. In: Proceedings of the conference,

15–17, November 2005, Columbus, OH. General technical

report NRS-P-1. Newtown Square, PA: U.S. Department of

Agriculture, Forest Service, Northern Research Station.

Guyette RP, Stambaugh MC, Dey DC, and Spetich M, 2010.

Developing and using fire scar histories in the Southern and

Eastern United States. Final report project # 06-3-1-16 Joint

Fire Science Program. 46 pp.

Hann W, Shlisky A, Havlina D, Schon K, Barrett S, DeMeo T,

Pohl K, Menakis J, Hamilton D, Jones, J, Levesque M, Frame

C. 2004. Interagency fire regime condition class guidebook.

Last update October 2007: version 1.3. www.frcc.gov.

Harris DC. 1987. Quantitative chemical analysis. New York:

W.H. Freeman and Company. p 818.

Heyerdahl EK, Brubaker LB, Agee JK. 2001. Spatial controls of

historical fire regimes: a multiscale example from the interior

west. Ecol 82:660–78.

Jacobson MZ. 2005. Fundamentals of atmospheric modeling.

2nd edn. New York: Cambridge University Press.

Keane RE, Parsons R, Hessburg P. 2002. Estimating historical

range and variation of landscape patch dynamics: limitations

of the simulation approach. Ecol Model 151:29–49.

Kitzberger T, Brown PM, Heyerdahl EK, Swetnam TW, Veblen

TT. 2007. Contingent Pacific-Atlantic Ocean influence on

multicentury wildfire synchrony over western North America.

Proc Natl Acad Sci USA 104(2):543–8.

Kaiser JW, Suttie M, Flemming J, Morcrette J, Boucher O,

Schluz MG. 2009. Global real-time fire emission estimates

based on space-borne fire radiative power observations. In:

AIP conference proceedings, vol 1100.

Kimmins JP. 1996. Forest ecology. Upper Saddle River, NJ:

Prentice Hall. 596 pp.

Krawchuk MA, Moritz MA, Parisien M-A, Van Dorn J, Hayhoe

K. 2009. Global pyrogeography: the current and future

distribution of wildfire. PLoS ONE 4(4):e5102. doi:10.1371/

journal.pone.0005102.

Leroy V, Cancellieri D, Leoni E, Rossi JL. 2010. Kinetic study of

forest fuels by TGA: Model-free kinetic approach for predic-

tion phenomena. Thermochim Acta 497:1–6.

Lynch JA, Hollis JL, Hu FS. 2004. Climate and landscape controls

of the boreal forest fire regime: Holocene records from Alaska.

J Ecol 92:477–89.

Mann M, Bradley RS, Hughes MK. 1998. Global scale temper-

ature patterns and climate forcing over the last six centuries.

Nature 392:779–87.

Marlon JR et al. 2008 Climate and human influences on global

biomass burning over the past two millennia. Nature Geosci

1:697–702

McQuarrie DA, Rock PA. 1987. General chemistry. New York:

W.H. Freeman and Company. p 876.

Mooney J. 1928. The aboriginal population of America north of

Mexico. In: Swanton J, Ed. Smithsonian miscellaneous col-

lections, vol 80. Washington, DC: Smithsonian Institution.

p 1–40.

Mooney SD, Webb M, Attenbrow V. 2007. A comparison of

charcoal and archaeological information to address the influ-

ences on Holocene fire activity in the Sydney Basin. Aust

Geogr 38:177–94.

Morgan P, Hardy CC, Swetnam TW, Rollins MG, Long DG. 2001.

Mapping fire regimes across time and space: understanding

coarse and fine-scale fire patterns. Int J Wildland Fire

10:329–42.

Parisien MA, Moritz MA. 2009. Environmental controls on the

distribution of wildfire at multiple spatial scales. Ecol Monogr

79:127–54.

Pausas JG, Keeley JE. 2009. A burning story: the role of fire in

the history of life. Bioscience 59(7):593–601.

Pyne SJ, Andrews PL, Laven RD. 1996. Introduction to wildland

fire. New York: Wiley. 769 pp.

Ragland KW, Aerts DJ. 1991. Properties of wood for combustion

analysis. Bioresour Technol 37:161–8.

Roberts AF. 1970. A review of kinetics data for pyrolysis of wood

and related substances. Combust Flame 14:261–72.

Schmidt KM, Menakis, JP, Hardy CC, Hann WJ, Bunnell DL.

2002. Development of coarse-scale spatial data for wildland

fire and fuel management. General technical report

RMRSGTR-87. Fort Collins, CO: U.S. Department of Agricul-

ture, Forest Service, Rocky Mountain Research Station. 41 pp.

www.fs.fed.us/fire/fuelman.

Stambaugh MC, Guyette RP. 2008. Predicting spatio-temporal

variability in fire return intervals using a topographic rough-

ness index. For Ecol Manag 254:463–73.

Stambaugh MC, Guyette RP, Marschall JM. 2011. Longleaf pine

(Pinus palustris Mill.) fire scars reveal new details of a frequent

fire regime. Veg Sci. doi:10.1111/j.1654-1103.2011.01322.x.

Stocks BJ, Fosberg MA, Lynham TJ, Mearns L, Wotton BM,

Yang Q, Jin J-Z, Lawrence K, Hartley GR, Mason JA,

McKenney DW. 1998. Climate change and forest fire potential

in Russian and Canadian boreal forests. Clim Change 38:1–13.

Swanton JR. 1952. The Indian tribes of North America. Smith-

sonian Institution, Bureau of American Ethnology, Bulletin

145. Washington, DC: Government Printing Office.

Swetnam TW, Betancourt JL. 1990. Fire—southern oscillation

relations in the Southwestern United States. Science 249:

1017–21.

334 R. P. Guyette and others

http://www.frcc.gov
http://dx.doi.org/10.1371/journal.pone.0005102
http://dx.doi.org/10.1371/journal.pone.0005102
http://www.fs.fed.us/fire/fuelman
http://dx.doi.org/10.1111/j.1654-1103.2011.01322.x


Swetnam TW, Allen CD, Betancourt JL. 1999. Applied historical

ecology: using the past to manage for the future. Ecol Appl

9(4):1189–206.
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